Accumbens neuroimmune signaling and dysregulation of astrocytic glutamate transport underlie conditioned nicotine-seeking behavior

Mark D. Namba, Yonatan M. Kupchik, Sade M. Spencer, Constanza Garcia-Keller, Julianna G. Goenaga, Gregory L. Powell, Ian A. Vicino, Ian B. Hogue, Cassandra D. Gipson

Research output: Contribution to journalArticlepeer-review

35 Scopus citations


Nicotine self-administration is associated with decreased expression of the glial glutamate transporter (GLT-1) and the cystine-glutamate exchange protein xCT within the nucleus accumbens core (NAcore). N-acetylcysteine (NAC) has been shown to restore these proteins in a rodent model of drug addiction and relapse. However, the specific molecular mechanisms driving its inhibitory effects on cue-induced nicotine reinstatement are unknown. Here, we confirm that extinction of nicotine-seeking behavior is associated with impaired NAcore GLT-1 function and expression and demonstrates that reinstatement of nicotine seeking rapidly enhances membrane fraction GLT-1 expression. Extinction and cue-induced reinstatement of nicotine seeking was also associated with increased tumor necrosis factor alpha (TNFα) and decreased glial fibrillary acidic protein (GFAP) expression in the NAcore. NAC treatment (100 mg/kg/day, i.p., for 5 d) inhibited cue-induced nicotine seeking and suppressed AMPA to NMDA current ratios, suggesting that NAC reduces NAcore postsynaptic excitability. In separate experiments, rats received NAC and an antisense vivo-morpholino to selectively suppress GLT-1 expression in the NAcore during extinction and were subsequently tested for cue-induced reinstatement of nicotine seeking. NAC treatment rescued NAcore GLT-1 expression and attenuated cue-induced nicotine seeking, which was blocked by GLT-1 antisense. NAC also reduced TNFα expression in the NAcore. Viral manipulation of the NF-κB pathway, which is downstream of TNFα, revealed that cue-induced nicotine seeking is regulated by NF-κB pathway signaling in the NAcore independent of GLT-1 expression. Ultimately, these results are the first to show that immunomodulatory mechanisms may regulate known nicotine-induced alterations in glutamatergic plasticity that mediate cue-induced nicotine-seeking behavior.

Original languageEnglish (US)
Article numbere12797
JournalAddiction Biology
Issue number5
StatePublished - Sep 1 2020


  • GFAP
  • GLT-1
  • IKK
  • NF-κB
  • TNFα
  • reinstatement

ASJC Scopus subject areas

  • Medicine (miscellaneous)
  • Pharmacology
  • Psychiatry and Mental health


Dive into the research topics of 'Accumbens neuroimmune signaling and dysregulation of astrocytic glutamate transport underlie conditioned nicotine-seeking behavior'. Together they form a unique fingerprint.

Cite this