A ratio-dependent food chain model and its applications to biological control

Sze Bi Hsu, Tzy Wei Hwang, Yang Kuang

Research output: Contribution to journalArticlepeer-review

149 Scopus citations


While biological controls have been successfully and frequently implemented by nature and human, plausible mathematical models are yet to be found to explain the often observed deterministic extinctions of both pest and control agent in such processes. In this paper we study a three trophic level food chain model with ratio-dependent Michaelis-Menten type functional responses. We shall show that this model is rich in boundary dynamics and is capable of generating such extinction dynamics. Two trophic level Michaelis-Menten type ratio-dependent predator-prey system was globally and systematically analyzed in details recently. A distinct and realistic feature of ratio-dependence is its capability of producing the extinction of prey species, and hence the collapse of the system. Another distinctive feature of this model is that its dynamical outcomes may depend on initial populations levels. Theses features, if preserved in a three trophic food chain model, make it appealing for modelling certain biological control processes (where prey is a plant species, middle predator as a pest, and top predator as a biological control agent) where the simultaneous extinctions of pest and control agent is the hallmark of their successes and are usually dependent on the amount of control agent. Our results indicate that this extinction dynamics and sensitivity to initial population levels are not only preserved, but also enriched in the three trophic level food chain model. Specifically, we provide partial answers to questions such as: under what scenarios a potential biological control may be successful, and when it may fail. We also study the questions such as what conditions ensure the coexistence of all the three species in the forms of a stable steady state and limit cycle, respectively. A multiple attractor scenario is found.

Original languageEnglish (US)
Pages (from-to)55-83
Number of pages29
JournalMathematical Biosciences
Issue number1
StatePublished - Jan 2003


  • Biological control
  • Chaos
  • Extinction
  • Food chain model
  • Limit cycle
  • Predator-prey model
  • Ratio-dependence
  • Simple food chain

ASJC Scopus subject areas

  • Statistics and Probability
  • Modeling and Simulation
  • Biochemistry, Genetics and Molecular Biology(all)
  • Immunology and Microbiology(all)
  • Agricultural and Biological Sciences(all)
  • Applied Mathematics


Dive into the research topics of 'A ratio-dependent food chain model and its applications to biological control'. Together they form a unique fingerprint.

Cite this