A physiological approach for assessing human survivability and liveability to heat in a changing climate

Jennifer Vanos, Gisel Guzman-Echavarria, Jane W. Baldwin, Coen Bongers, Kristie L. Ebi, Ollie Jay

Research output: Contribution to journalArticlepeer-review

8 Scopus citations

Abstract

Most studies projecting human survivability limits to extreme heat with climate change use a 35 °C wet-bulb temperature (Tw) threshold without integrating variations in human physiology. This study applies physiological and biophysical principles for young and older adults, in sun or shade, to improve current estimates of survivability and introduce liveability (maximum safe, sustained activity) under current and future climates. Our physiology-based survival limits show a vast underestimation of risks by the 35 °C Tw model in hot-dry conditions. Updated survivability limits correspond to Tw~25.8–34.1 °C (young) and ~21.9–33.7 °C (old)—0.9–13.1 °C lower than Tw = 35 °C. For older female adults, estimates are ~7.2–13.1 °C lower than 35 °C in dry conditions. Liveability declines with sun exposure and humidity, yet most dramatically with age (2.5–3.0 METs lower for older adults). Reductions in safe activity for younger and older adults between the present and future indicate a stronger impact from aging than warming.

Original languageEnglish (US)
Article number7653
JournalNature communications
Volume14
Issue number1
DOIs
StatePublished - Dec 2023
Externally publishedYes

ASJC Scopus subject areas

  • General Chemistry
  • General Biochemistry, Genetics and Molecular Biology
  • General Physics and Astronomy

Fingerprint

Dive into the research topics of 'A physiological approach for assessing human survivability and liveability to heat in a changing climate'. Together they form a unique fingerprint.

Cite this