A mathematical model of Schistosoma mansoni in Biomphalaria glabrata with control strategies

Research output: Contribution to journalArticlepeer-review

11 Scopus citations


We describe and analyze a mathematical model for schistosomiasis in which infected snails are distinguished from susceptible through increased mortality and no reproduction. We based the model on the same derivation as Anderson and May (J. Anim. Ecol. 47:219-247, 1978), Feng and Milner (A New Mathematical Model of Schistosomiasis, Mathematical Models in Medical and Health Science, Nashville, TN, 1997. Innov. Appl. Math., Vanderbilt Univ. Press, Nashville, pp. 117-128, 1998), and May and Anderson (J. Anim. Ecol. 47:249-267, 1978), but used logistic growth both in human and snail hosts. We introduce a parameter r, the effective coverage of medical treatment/prevention to control the infection. We determine a reproductive number for the disease directly related to its persistence and extinction. Finally, we obtain a critical value for r that indicates the minimum treatment effort needed in order to clear out the disease from the population.

Original languageEnglish (US)
Pages (from-to)1886-1905
Number of pages20
JournalBulletin of mathematical biology
Issue number7
StatePublished - Oct 2008
Externally publishedYes


  • Castration
  • Chemoprophylaxis
  • Logistic growth
  • Schistosomiasis

ASJC Scopus subject areas

  • General Neuroscience
  • Immunology
  • General Mathematics
  • General Biochemistry, Genetics and Molecular Biology
  • General Environmental Science
  • Pharmacology
  • General Agricultural and Biological Sciences
  • Computational Theory and Mathematics


Dive into the research topics of 'A mathematical model of Schistosoma mansoni in Biomphalaria glabrata with control strategies'. Together they form a unique fingerprint.

Cite this