Visually guided collision avoidance and collision achievement

David Regan, Robert Gray

Research output: Contribution to journalReview articlepeer-review

112 Scopus citations

Abstract

To survive on today's highways, a driver must have highly developed skills in visually guided collision avoidance. To play such games as cricket, tennis or baseball demands accurate, precise and reliable collision achievement. This review discusses evidence that some of these tasks are performed by predicting where an object will be at some sharply defined instant, several hundred milliseconds in the future, while other tasks are performed by utilizing the fact that some of our motor actions change what we see in ways that obey lawful relationships, and can therefore be learned. Several monocular and binocular visual correlates of the direction of an object's motion relative to the observer's head have been derived theoretically, along with visual correlates of the time to collision with an approaching object. Although laboratory psychophysics can identify putative neural mechanisms by showing which of the known correlates are processed by the human visual system independently of other visual information, it is only field research on, for example, driving, aviation and sport that can show which visual cues are actually used in these activities. This article reviews this research and describes a general psychophysically based rational approach to the design of such field studies.

Original languageEnglish (US)
Pages (from-to)99-107
Number of pages9
JournalTrends in Cognitive Sciences
Volume4
Issue number3
DOIs
StatePublished - Mar 1 2000
Externally publishedYes

ASJC Scopus subject areas

  • Neuropsychology and Physiological Psychology
  • Experimental and Cognitive Psychology
  • Cognitive Neuroscience

Fingerprint

Dive into the research topics of 'Visually guided collision avoidance and collision achievement'. Together they form a unique fingerprint.

Cite this