Visual gravity influences arm movement planning

Alessandra Sciutti, Laurent Demougeot, Bastien Berret, Simone Toma, Giulio Sandini, Charalambos Papaxanthis, Thierry Pozzo

Research output: Contribution to journalArticlepeer-review

22 Scopus citations


When submitted to a visuomotor rotation, subjects show rapid adaptation of visually guided arm reaching movements, indicated by a progressive reduction in reaching errors. In this study, we wanted to make a step forward by investigating to what extent this adaptation also implies changes into the motor plan. Up to now, classical visuomotor rotation paradigms have been performed on the horizontal plane, where the reaching motor plan in general requires the same kinematics (i.e., straight path and symmetric velocity profile). To overcome this limitation, we considered vertical and horizontal movement directions requiring specific velocity profiles. This way, a change in the motor plan due to the visuomotor conflict would be measurable in terms of a modification in the velocity profile of the reaching movement. Ten subjects performed horizontal and vertical reaching movements while observing a rotated visual feedback of their motion. We found that adaptation to a visuomotor rotation produces a significant change in the motor plan, i.e., changes to the symmetry of velocity profiles. This suggests that the central nervous system takes into account the visual information to plan a future motion, even if this causes the adoption of nonoptimal motor plans in terms of energy consumption. However, the influence of vision on arm movement planning is not fixed, but rather changes as a function of the visual orientation of the movement. Indeed, a clear influence on motion planning can be observed only when the movement is visually presented as oriented along the vertical direction. Thus vision contributes differently to the planning of arm pointing movements depending on motion orientation in space.

Original languageEnglish (US)
Pages (from-to)3433-3445
Number of pages13
JournalJournal of neurophysiology
Issue number12
StatePublished - Jun 15 2012
Externally publishedYes


  • Internal model of gravity
  • Motor planning
  • Vertical
  • Visual rotation
  • Visuomotor conflict

ASJC Scopus subject areas

  • Neuroscience(all)
  • Physiology


Dive into the research topics of 'Visual gravity influences arm movement planning'. Together they form a unique fingerprint.

Cite this