40 Scopus citations


The present study was designed to determine whether manipulation learned with a set of digits can be transferred to grips involving a different number of digits, and possible mechanisms underlying such transfer. The goal of the task was to exert a torque and vertical forces on a visually symmetrical object at object lift onset to balance the external torque caused by asymmetrical mass distribution. Subjects learned this manipulation through consecutive practice using one grip type (two or three digits), after which they performed the same task but with another grip type (e.g., after adding or removing one digit, respectively). Subjects were able to switch grip type without compromising the behavioral outcome (i.e., the direction, timing, and magnitude of the torque exerted on the object was unchanged), despite the use of significantly different digit force-position coordination patterns in the two grip types. Our results support the transfer of learning for anticipatory control of manipulation and indicate that the CNS forms an internal model of the manipulation task independent of the effectors that are used to learn it. We propose that sensory information about the new digit placement-resulting from adding or removing a digit immediately after the switch in grip type-plays an important role in the accurate modulation of new digit force distributions. We discuss our results in relation to studies of manipulation reporting lack of learning transfer and propose a theoretical framework that accounts for failure or success of motor learning generalization.

Original languageEnglish (US)
Pages (from-to)13576-13584
Number of pages9
JournalJournal of Neuroscience
Issue number38
StatePublished - Sep 21 2011

ASJC Scopus subject areas

  • Neuroscience(all)


Dive into the research topics of 'Transfer of learned manipulation following changes in degrees of freedom'. Together they form a unique fingerprint.

Cite this