TY - JOUR
T1 - Transfer of learned manipulation following changes in degrees of freedom
AU - Fu, Qiushi
AU - Hasan, Ziaul
AU - Santello, Marco
PY - 2011/9/21
Y1 - 2011/9/21
N2 - The present study was designed to determine whether manipulation learned with a set of digits can be transferred to grips involving a different number of digits, and possible mechanisms underlying such transfer. The goal of the task was to exert a torque and vertical forces on a visually symmetrical object at object lift onset to balance the external torque caused by asymmetrical mass distribution. Subjects learned this manipulation through consecutive practice using one grip type (two or three digits), after which they performed the same task but with another grip type (e.g., after adding or removing one digit, respectively). Subjects were able to switch grip type without compromising the behavioral outcome (i.e., the direction, timing, and magnitude of the torque exerted on the object was unchanged), despite the use of significantly different digit force-position coordination patterns in the two grip types. Our results support the transfer of learning for anticipatory control of manipulation and indicate that the CNS forms an internal model of the manipulation task independent of the effectors that are used to learn it. We propose that sensory information about the new digit placement-resulting from adding or removing a digit immediately after the switch in grip type-plays an important role in the accurate modulation of new digit force distributions. We discuss our results in relation to studies of manipulation reporting lack of learning transfer and propose a theoretical framework that accounts for failure or success of motor learning generalization.
AB - The present study was designed to determine whether manipulation learned with a set of digits can be transferred to grips involving a different number of digits, and possible mechanisms underlying such transfer. The goal of the task was to exert a torque and vertical forces on a visually symmetrical object at object lift onset to balance the external torque caused by asymmetrical mass distribution. Subjects learned this manipulation through consecutive practice using one grip type (two or three digits), after which they performed the same task but with another grip type (e.g., after adding or removing one digit, respectively). Subjects were able to switch grip type without compromising the behavioral outcome (i.e., the direction, timing, and magnitude of the torque exerted on the object was unchanged), despite the use of significantly different digit force-position coordination patterns in the two grip types. Our results support the transfer of learning for anticipatory control of manipulation and indicate that the CNS forms an internal model of the manipulation task independent of the effectors that are used to learn it. We propose that sensory information about the new digit placement-resulting from adding or removing a digit immediately after the switch in grip type-plays an important role in the accurate modulation of new digit force distributions. We discuss our results in relation to studies of manipulation reporting lack of learning transfer and propose a theoretical framework that accounts for failure or success of motor learning generalization.
UR - http://www.scopus.com/inward/record.url?scp=80053023004&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=80053023004&partnerID=8YFLogxK
U2 - 10.1523/JNEUROSCI.1143-11.2011
DO - 10.1523/JNEUROSCI.1143-11.2011
M3 - Article
C2 - 21940448
AN - SCOPUS:80053023004
SN - 0270-6474
VL - 31
SP - 13576
EP - 13584
JO - Journal of Neuroscience
JF - Journal of Neuroscience
IS - 38
ER -