TY - JOUR
T1 - Tragedy of the commons in the chemostat
AU - Schuster, Martin
AU - Foxall, Eric
AU - Finch, David
AU - Smith, Hal
AU - De Leenheer, Patrick
N1 - Funding Information:
This work was supported by National Science Foundation: NSF-MCB-1158553 and NSF-MCB-1616967 (to MS) and NSF-DMS-1411853; https://www.nsf.gov/ (to PDL) and Simons Foundation: 355819 (to HS); https://www.simonsfoundation.org/. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
Publisher Copyright:
© 2017 Schuster et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
PY - 2017/12
Y1 - 2017/12
N2 - We present a proof of principle for the phenomenon of the tragedy of the commons that is at the center of many theories on the evolution of cooperation. Whereas the tragedy is commonly set in a game theoretical context, and attributed to an underlying Prisoner’s Dilemma, we take an alternative approach based on basic mechanistic principles of species growth that does not rely on the specification of payoffs which may be difficult to determine in practice. We establish the tragedy in the context of a general chemostat model with two species, the cooperator and the cheater. Both species have the same growth rate function and yield constant, but the cooperator allocates a portion of the nutrient uptake towards the production of a public good -the “Commons” in the Tragedy- which is needed to digest the externally supplied nutrient. The cheater on the other hand does not produce this enzyme, and allocates all nutrient uptake towards its own growth. We prove that when the cheater is present initially, both the cooperator and the cheater will eventually go extinct, hereby confirming the occurrence of the tragedy. We also show that without the cheater, the cooperator can survive indefinitely, provided that at least a low level of public good or processed nutrient is available initially. Our results provide a predictive framework for the analysis of cooperator-cheater dynamics in a powerful model system of experimental evolution.
AB - We present a proof of principle for the phenomenon of the tragedy of the commons that is at the center of many theories on the evolution of cooperation. Whereas the tragedy is commonly set in a game theoretical context, and attributed to an underlying Prisoner’s Dilemma, we take an alternative approach based on basic mechanistic principles of species growth that does not rely on the specification of payoffs which may be difficult to determine in practice. We establish the tragedy in the context of a general chemostat model with two species, the cooperator and the cheater. Both species have the same growth rate function and yield constant, but the cooperator allocates a portion of the nutrient uptake towards the production of a public good -the “Commons” in the Tragedy- which is needed to digest the externally supplied nutrient. The cheater on the other hand does not produce this enzyme, and allocates all nutrient uptake towards its own growth. We prove that when the cheater is present initially, both the cooperator and the cheater will eventually go extinct, hereby confirming the occurrence of the tragedy. We also show that without the cheater, the cooperator can survive indefinitely, provided that at least a low level of public good or processed nutrient is available initially. Our results provide a predictive framework for the analysis of cooperator-cheater dynamics in a powerful model system of experimental evolution.
UR - http://www.scopus.com/inward/record.url?scp=85038942372&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85038942372&partnerID=8YFLogxK
U2 - 10.1371/journal.pone.0186119
DO - 10.1371/journal.pone.0186119
M3 - Article
C2 - 29261671
AN - SCOPUS:85038942372
SN - 1932-6203
VL - 12
JO - PloS one
JF - PloS one
IS - 12
M1 - e0186119
ER -