Topological Receptive Field Model for Human Retinotopic Mapping

Yanshuai Tu, Duyan Ta, Zhong Lin Lu, Yalin Wang

Research output: Chapter in Book/Report/Conference proceedingConference contribution

2 Scopus citations


The mapping between visual inputs on the retina and neuronal activations in the visual cortex, i.e., retinotopic map, is an essential topic in vision science and neuroscience. Human retinotopic maps can be revealed by analyzing the functional magnetic resonance imaging (fMRI) signal responses to designed visual stimuli in vivo. Neurophysiology studies summarized that visual areas are topological (i.e., nearby neurons have receptive fields at nearby locations in the image). However, conventional fMRI-based analyses frequently generate non-topological results because they process fMRI signals on a voxel-wise basis, without considering the neighbor relations on the surface. Here we propose a topological receptive field (tRF) model which imposes the topological condition when decoding retinotopic fMRI signals. More specifically, we parametrized the cortical surface to a unit disk, characterized the topological condition by tRF, and employed an efficient scheme to solve the tRF model. We tested our framework on both synthetic and human fMRI data. Experimental results showed that the tRF model could remove the topological violations, improve model explaining power, and generate biologically plausible retinotopic maps. The proposed framework is general and can be applied to other sensory maps.

Original languageEnglish (US)
Title of host publicationMedical Image Computing and Computer Assisted Intervention – MICCAI 2021 - 24th International Conference, Proceedings
EditorsMarleen de Bruijne, Philippe C. Cattin, Stéphane Cotin, Nicolas Padoy, Stefanie Speidel, Yefeng Zheng, Caroline Essert
PublisherSpringer Science and Business Media Deutschland GmbH
Number of pages11
ISBN (Print)9783030872335
StatePublished - 2021
Event24th International Conference on Medical Image Computing and Computer Assisted Intervention, MICCAI 2021 - Virtual, Online
Duration: Sep 27 2021Oct 1 2021

Publication series

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volume12907 LNCS
ISSN (Print)0302-9743
ISSN (Electronic)1611-3349


Conference24th International Conference on Medical Image Computing and Computer Assisted Intervention, MICCAI 2021
CityVirtual, Online


  • Population receptive field
  • Retinotopic map
  • Topological

ASJC Scopus subject areas

  • Theoretical Computer Science
  • General Computer Science


Dive into the research topics of 'Topological Receptive Field Model for Human Retinotopic Mapping'. Together they form a unique fingerprint.

Cite this