TY - JOUR
T1 - The role of grain boundary structure and crystal orientation on crack growth asymmetry in aluminum
AU - Adlakha, I.
AU - Tschopp, M. A.
AU - Solanki, Kiran
N1 - Funding Information:
The authors would like to recognize Dr. W. Mullins and Dr. A.K. Vasudevan from the Office of Naval Research for providing insights and valuable suggestions. This material is based upon work supported by the Office of Naval Research under contract no. N000141110793 . We would also like to acknowledge the Fulton High Performance Computing at Arizona State University.
Publisher Copyright:
© 2014 Elsevier B.V.
PY - 2014/11/1
Y1 - 2014/11/1
N2 - Atomistic simulations have shown that the grain boundary (GB) structure affects a number of physical, mechanical, thermal, and chemical properties, which can have a profound effect on macroscopic properties of polycrystalline materials. The research objective herein is to use atomistic simulations to explore the role that GB structure and the adjacent crystallographic orientations have on the directional asymmetry of an intergranular crack (i.e. cleavage behavior is favored along one direction, while ductile behavior along the other direction of the interface) for aluminum grain boundaries. Simulation results from seven 〈110〉 symmetric tilt grain boundaries (STGBs) show that the GB structure and the associated free volume directly influence the stress-strain response, crack growth rate, and crack tip plasticity mechanisms for middle-tension (M(T)) crack propagation specimens. In particular, the structural units present within the GB promote whether a dislocation or twinning-based mechanism operates at the crack tip during intergranular fracture along certain GBs (e.g., the 'E' structural unit promotes twinning at the crack tip in Al). Furthermore, the crystallography of the adjacent grains, and therefore the available slip planes, can significantly affect the crack growth rates in both directions of the crack - this creates a strong directional asymmetry in the crack growth rate in the σ11 (113) and the σ27 (552) STGBs. Upon comparing these results with the theoretical Rice criterion, it was found that certain GBs in this study (σ9 (221), σ11 (332) and σ33 (441)) show an absence of directional asymmetry in the observed crack growth behavior, in conflict with the Rice criterion. The significance of the present research is that it provides a physical basis for the role of GB character and crystallographic orientation on intergranular crack tip deformation behavior.
AB - Atomistic simulations have shown that the grain boundary (GB) structure affects a number of physical, mechanical, thermal, and chemical properties, which can have a profound effect on macroscopic properties of polycrystalline materials. The research objective herein is to use atomistic simulations to explore the role that GB structure and the adjacent crystallographic orientations have on the directional asymmetry of an intergranular crack (i.e. cleavage behavior is favored along one direction, while ductile behavior along the other direction of the interface) for aluminum grain boundaries. Simulation results from seven 〈110〉 symmetric tilt grain boundaries (STGBs) show that the GB structure and the associated free volume directly influence the stress-strain response, crack growth rate, and crack tip plasticity mechanisms for middle-tension (M(T)) crack propagation specimens. In particular, the structural units present within the GB promote whether a dislocation or twinning-based mechanism operates at the crack tip during intergranular fracture along certain GBs (e.g., the 'E' structural unit promotes twinning at the crack tip in Al). Furthermore, the crystallography of the adjacent grains, and therefore the available slip planes, can significantly affect the crack growth rates in both directions of the crack - this creates a strong directional asymmetry in the crack growth rate in the σ11 (113) and the σ27 (552) STGBs. Upon comparing these results with the theoretical Rice criterion, it was found that certain GBs in this study (σ9 (221), σ11 (332) and σ33 (441)) show an absence of directional asymmetry in the observed crack growth behavior, in conflict with the Rice criterion. The significance of the present research is that it provides a physical basis for the role of GB character and crystallographic orientation on intergranular crack tip deformation behavior.
KW - Directional anisotropy
KW - Dislocation
KW - Fracture
KW - Grain boundary
KW - Twinning
UR - http://www.scopus.com/inward/record.url?scp=84907481854&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84907481854&partnerID=8YFLogxK
U2 - 10.1016/j.msea.2014.08.083
DO - 10.1016/j.msea.2014.08.083
M3 - Article
AN - SCOPUS:84907481854
SN - 0921-5093
VL - 618
SP - 345
EP - 354
JO - Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing
JF - Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing
ER -