Techniques for the analysis of cysteine sulfhydryls and oxidative protein folding

Chad Borges, Nisha D. Sherma

Research output: Contribution to journalReview articlepeer-review

19 Scopus citations

Abstract

Significance: Modification of cysteine thiols dramatically affects protein function and stability. Hence, the abilities to quantify specific protein sulfhydryl groups within complex biological samples and map disulfide bond structures are crucial to gaining greater insights into how proteins operate in human health and disease. Recent Advances: Many different molecular probes are now commercially available to label and track cysteine residues at great sensitivity. Coupled with mass spectrometry, stable isotope-labeled sulfhydryl-specific reagents can provide previously unprecedented molecular insights into the dynamics of cysteine modification. Likewise, the combined application of modern mass spectrometers with improved sample preparation techniques and novel data mining algorithms is beginning to routinize the analysis of complex protein disulfide structures. Critical Issues: Proper application of these modern tools and techniques, however, still requires fundamental understanding of sulfhydryl chemistry as well as the assumptions that accompany sample preparation and underlie effective data interpretation. Future Directions: The continued development of tools, technical approaches, and corresponding data processing algorithms will, undoubtedly, facilitate site-specific protein sulfhydryl quantification and disulfide structure analysis from within complex biological mixtures with ever-improving accuracy and sensitivity. Fully routinizing disulfide structure analysis will require an equal but balanced focus on sample preparation and corresponding mass spectral dataset reproducibility. Antioxid. Redox Signal. 21, 511-531.

Original languageEnglish (US)
Pages (from-to)511-531
Number of pages21
JournalAntioxidants and Redox Signaling
Volume21
Issue number3
DOIs
StatePublished - Jul 20 2014

ASJC Scopus subject areas

  • Biochemistry
  • Physiology
  • Molecular Biology
  • Clinical Biochemistry
  • Cell Biology

Fingerprint

Dive into the research topics of 'Techniques for the analysis of cysteine sulfhydryls and oxidative protein folding'. Together they form a unique fingerprint.

Cite this