Abstract
The major challenge in the synthesis of high-density biofuels is to identify the bio-based source for C-C cyclic compounds and C-C coupling reactions with a suitable selectivity. Herein, we selectively synthesize 1,2,4-benzenetriol (BTO) with a yield of 51.4% from cellulose-derived 5-hydromethylfurfural via a ring-rearrangement reaction. The cellulose-derived route is a more meaningful route for the C-C cyclic compounds compared to the traditional hemicellulose- and lignin-derived routes. Furthermore, BTO is very easily dimerized via a C-C oxidative coupling reaction, showing a yield of 94.4% and selectivity of nearly 100% under environmentally friendly reaction conditions. After hydrodeoxygenation, bicyclohexane is obtained with a yield of 87.4%. This work not only provides a promising route to produce C-C cyclic fine compounds based on a cellulose-derived route, but also shows a highly efficient synthesis route for high-density biofuels via the C-C oxidative coupling reaction.
Original language | English (US) |
---|---|
Pages (from-to) | 2468-2473 |
Number of pages | 6 |
Journal | Green Chemistry |
Volume | 22 |
Issue number | 8 |
DOIs | |
State | Published - Apr 21 2020 |
ASJC Scopus subject areas
- Environmental Chemistry
- Pollution