Synthesis and characterization of silicalite powders and membranes with micro-meso bimodal pores

C. A. Cooper, Jerry Lin

Research output: Contribution to journalArticlepeer-review

16 Scopus citations


Silicalite sols containing silicalite agglomerates of 150-380 nm in size were synthesized by hydrothermal synthesis for 0.5-3 days. Silicalite powders and supported silicalite membranes containing micro-meso bimodal pores were prepared by the sol-gel method using these silicalite sols. The silicalite powders contain intracrystalline zeolitic pores (0.54 nm) and intercrystalline mesopores of about 3-4 nm in diameter. For the silicalite powders the mesopore size decreases and mesopore surface area increases with increasing silicalite agglomerate size as a result of a change of the shape of silicalite agglomerates from round to more faceted one. Continuous silicalite thin films of thicknesses ranging from 3 μm to 12 μm were made on α-alumina by the sol-gel dip-coating method. The supported silicalite membranes also contain both zeolitic pores and mesoporous intercrystalline pores. The single gas He permeance of the 3 μm thick α-alumina supported silicalite membrane was found to be from 2.7 × 10-6 to 3.3 × 10-6 mol/m2 s Pa. These bimodal pore zeolite powders offer the potential as catalysts and sorbents with improved efficiency. The bimodal pore zeolite membrane can be used as support for zeolite and other membranes and as compact packed-bed reactor for chemical reaction.

Original languageEnglish (US)
Pages (from-to)320-327
Number of pages8
JournalJournal of Materials Science
Issue number1
StatePublished - Jan 2007

ASJC Scopus subject areas

  • Mechanics of Materials
  • Ceramics and Composites
  • Mechanical Engineering
  • Polymers and Plastics
  • General Materials Science
  • Materials Science (miscellaneous)


Dive into the research topics of 'Synthesis and characterization of silicalite powders and membranes with micro-meso bimodal pores'. Together they form a unique fingerprint.

Cite this