Surfactant effects on carbon nanotube interactions with human keratinocytes

Nancy A. Monteiro-Riviere, Alfred O. Inman, Yunyu Y. Wang, Robert J. Nemanich

Research output: Contribution to journalArticlepeer-review

124 Scopus citations


Interactions of multiwalled carbon nanotubes (MWCNTs) with human epidermal keratinocytes (HEKs) were studied with respect to the effect of surfactant on dispersion of MWCNT aggregates and cytotoxicity. Our earlier studies had shown that the unmodified MWCNTs were localized within the cytoplasmic vacuoles of HEKs and elicited an inflammatory response. However, MWCNTs in solution tend to aggregate and, therefore, cells are exposed to large MWCNT aggregates. The purpose of this study was to find a surfactant that prevents the formation of large aggregates of MWCNTs without being toxic to the HEKs. HEKs were exposed to serial dilutions (10% to 0.1%) of L61, L92, and F127 Pluronic and 20 or 60 Tween for 24 hours. HEK viability, proportional to surfactant concentration, ranged from 27.1% to 98.5% with Pluronic F127; viability with the other surfactants was less than 10%. Surfactants dispersed and reduced MWCNT aggregation in medium. MWCNTs at 0.4 mg/mL in 5% or 1% Pluronic F127 were incubated with HEKs and assayed for interleukin 8 (IL-8). MWCNTs were cytotoxic to HEKs independent of surfactant exposure. In contrast, MWCNT-induced IL-8 release was reduced when exposed to 1% or 5% Pluronic F127 (P < .05). However, both MWCNTs and surfactant, alone or in combination, increased IL-8 release compared with control exposures at 12 and 24 hours. These results suggest that the surfactant-MWCNT interaction is more complex than simple dispersion alone and should be investigated to determine the mode of interaction.

Original languageEnglish (US)
Pages (from-to)293-299
Number of pages7
JournalNanomedicine: Nanotechnology, Biology, and Medicine
Issue number4
StatePublished - Dec 1 2005
Externally publishedYes


  • Human epidermal keratinocytes
  • Multiwalled carbon nanotubes
  • Surfactant

ASJC Scopus subject areas

  • Bioengineering
  • Medicine (miscellaneous)
  • Molecular Medicine
  • Biomedical Engineering
  • General Materials Science
  • Pharmaceutical Science


Dive into the research topics of 'Surfactant effects on carbon nanotube interactions with human keratinocytes'. Together they form a unique fingerprint.

Cite this