Abstract
Ion-containing block copolymers continue to attract significant interest as conducting membranes in energy storage devices. Reversible addition-fragmentation chain transfer (RAFT) polymerization enables the synthesis of well-defined ionomeric A-BC-A triblock copolymers, featuring a microphase-separated morphology and a combination of excellent mechanical properties and high ion transport. The soft central "BC" block is composed of poly(4-styrenesulfonyl(trifluoromethylsulfonyl)imide) (poly(Sty-Tf2N)) with -SO2-N--SO2-CF3 anionic groups associated with a mobile lithium cation and low-Tg di(ethylene glycol)methyl ether methacrylate (DEGMEMA) units. External polystyrene A blocks provide mechanical strength with nanoscale morphology even at high ion content. Electrochemical impedance spectroscopy (EIS) and pulse-field-gradient (PFG) NMR spectroscopy have clarified the ion transport properties of these ionomeric A-BC-A triblock copolymers. Results confirmed that well-defined ionomeric A-BC-A triblock copolymers combine improved ion-transport properties with mechanical stability with significant potential for application in energy storage devices.
Original language | English (US) |
---|---|
Pages (from-to) | 4520-4528 |
Number of pages | 9 |
Journal | Macromolecules |
Volume | 48 |
Issue number | 13 |
DOIs | |
State | Published - Jul 14 2015 |
Externally published | Yes |
ASJC Scopus subject areas
- Organic Chemistry
- Polymers and Plastics
- Inorganic Chemistry
- Materials Chemistry