TY - JOUR
T1 - Study of the Structural Mechanical Properties of Drainage Canals Rehabilitated by Spraying Method
AU - Zeng, Cong
AU - Gong, Chenkun
AU - Wang, Fuzhi
AU - Zhu, Zihao
AU - Zhao, Yahong
AU - Ariaratnam, Samuel T.
N1 - Publisher Copyright:
© 2022 by the authors. Licensee MDPI, Basel, Switzerland.
PY - 2022/7/1
Y1 - 2022/7/1
N2 - A large number of drainage pipes and canals in China have been in disrepair for a long time and there have been problems such as leakage and corrosion. In response to these problems, this paper studies a non-excavation technology for repairing the arched canal structure—the in-situ spraying method. To study the influence of the original canal structure on the mechanical characteristics of the lining structure by in-situ spraying and the restraint effect on the lining structure, a field model test with a similar ratio of 1:2 was conducted in the field test pit. By conducting four stages of three-point concentrated load loading tests, the mechanical characteristics of the lining structure were investigated to reveal the influence of the canal structure on the force of the lining structure. The test results show that: the maximum crack width of the newly added lining structure is 0.27 mm and the normal service ultimate bearing capacity of the arched structure repaired by H-70 reaches 150 kN; comparing the loading test and the numerical simulation results, the difference between the two vault displacement results is 4.65% and the results are relatively consistent. The displacement of the bottom of the lining structure is small and the participation of the bottom plate is small, while the displacement of the upper arch structure of the lining is significantly larger than the lateral displacement, indicating that the canal structure can effectively limit the lateral displacement of the newly added lining and that the canal structure is greatly reduced. The bending moment of the lining structure is improved and the restraint effect on the arch foot is more obvious. This paper proposes the use of H-70 to repair arched canal structures by the in-situ spraying method and seeks to prove the feasibility of this method and fill the gap of research in this area. This paper provides the structural design basis and experimental knowledge for the construction of the repair method, which has important practical significance for the pipeline repair project in the future.
AB - A large number of drainage pipes and canals in China have been in disrepair for a long time and there have been problems such as leakage and corrosion. In response to these problems, this paper studies a non-excavation technology for repairing the arched canal structure—the in-situ spraying method. To study the influence of the original canal structure on the mechanical characteristics of the lining structure by in-situ spraying and the restraint effect on the lining structure, a field model test with a similar ratio of 1:2 was conducted in the field test pit. By conducting four stages of three-point concentrated load loading tests, the mechanical characteristics of the lining structure were investigated to reveal the influence of the canal structure on the force of the lining structure. The test results show that: the maximum crack width of the newly added lining structure is 0.27 mm and the normal service ultimate bearing capacity of the arched structure repaired by H-70 reaches 150 kN; comparing the loading test and the numerical simulation results, the difference between the two vault displacement results is 4.65% and the results are relatively consistent. The displacement of the bottom of the lining structure is small and the participation of the bottom plate is small, while the displacement of the upper arch structure of the lining is significantly larger than the lateral displacement, indicating that the canal structure can effectively limit the lateral displacement of the newly added lining and that the canal structure is greatly reduced. The bending moment of the lining structure is improved and the restraint effect on the arch foot is more obvious. This paper proposes the use of H-70 to repair arched canal structures by the in-situ spraying method and seeks to prove the feasibility of this method and fill the gap of research in this area. This paper provides the structural design basis and experimental knowledge for the construction of the repair method, which has important practical significance for the pipeline repair project in the future.
KW - canal structure
KW - force characteristics
KW - in-situ spraying
KW - model tests
UR - http://www.scopus.com/inward/record.url?scp=85133750005&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85133750005&partnerID=8YFLogxK
U2 - 10.3390/polym14142781
DO - 10.3390/polym14142781
M3 - Article
AN - SCOPUS:85133750005
SN - 2073-4360
VL - 14
JO - Polymers
JF - Polymers
IS - 14
M1 - 2781
ER -