Spatially-interactive biomolecular networks organized by nucleic acid nanostructures

Jinglin Fu, Minghui Liu, Yan Liu, Hao Yan

Research output: Contribution to journalArticlepeer-review

132 Scopus citations


Living systems have evolved a variety of nanostructures to control the molecular interactions that mediate many functions including the recognition of targets by receptors, the binding of enzymes to substrates, and the regulation of enzymatic activity. Mimicking these structures outside of the cell requires methods that offer nanoscale control over the organization of individual network components. Advances in DNA nanotechnology have enabled the design and fabrication of sophisticated one-, two- and three-dimensional (1D, 2D, and 3D) nanostructures that utilize spontaneous and sequence-specific DNA hybridization. Compared with other self-assembling biopolymers, DNA nanostructures offer predictable and programmable interactions and surface features to which other nanoparticles and biomolecules can be precisely positioned.The ability to control the spatial arrangement of the components while constructing highly organized networks will lead to various applications of these systems. For example, DNA nanoarrays with surface displays of molecular probes can sense noncovalent hybridization interactions with DNA, RNA, and proteins and covalent chemical reactions. DNA nanostructures can also align external molecules into well-defined arrays, which may improve the resolution of many structural determination methods, such as X-ray diffraction, cryo-EM, NMR, and super-resolution fluorescence. Moreover, by constraint of target entities to specific conformations, self-assembled DNA nanostructures can serve as molecular rulers to evaluate conformation-dependent activities.This Account describes the most recent advances in the DNA nanostructure directed assembly of biomolecular networks and explores the possibility of applying this technology to other fields of study. Recently, several reports have demonstrated the DNA nanostructure directed assembly of spatially interactive biomolecular networks. For example, researchers have constructed synthetic multienzyme cascades by organizing the position of the components using DNA nanoscaffolds in vitro or by utilizing RNA matrices in vivo. These structures display enhanced efficiency compared with the corresponding unstructured enzyme mixtures. Such systems are designed to mimic cellular function, where substrate diffusion between enzymes is facilitated and reactions are catalyzed with high efficiency and specificity. In addition, researchers have assembled multiple choromophores into arrays using a DNA nanoscaffold that optimizes the relative distance between the dyes and their spatial organization. The resulting artificial light-harvesting system exhibits efficient cascading energy transfers. Finally, DNA nanostructures have been used as assembly templates to construct nanodevices that execute rationally designed behaviors, including cargo loading, transportation, and route control.

Original languageEnglish (US)
Pages (from-to)1215-1226
Number of pages12
JournalAccounts of chemical research
Issue number8
StatePublished - Aug 21 2012

ASJC Scopus subject areas

  • Chemistry(all)


Dive into the research topics of 'Spatially-interactive biomolecular networks organized by nucleic acid nanostructures'. Together they form a unique fingerprint.

Cite this