TY - JOUR
T1 - Smooth Matérn Gaussian random fields
T2 - Euler characteristic, expected number and height distribution of critical points
AU - Cheng, Dan
N1 - Publisher Copyright:
© 2024 Elsevier B.V.
PY - 2024/7
Y1 - 2024/7
N2 - This paper studies Gaussian random fields with Matérn covariance functions with smooth parameter ν>2. Two cases of parameter spaces, the Euclidean space and N-dimensional sphere, are considered. For such smooth Gaussian fields, we have derived the explicit formulae for the expected Euler characteristic of the excursion set, the expected number and height distribution of critical points. The results are valuable for approximating the excursion probability in family-wise error control and for computing p-values in peak inference.
AB - This paper studies Gaussian random fields with Matérn covariance functions with smooth parameter ν>2. Two cases of parameter spaces, the Euclidean space and N-dimensional sphere, are considered. For such smooth Gaussian fields, we have derived the explicit formulae for the expected Euler characteristic of the excursion set, the expected number and height distribution of critical points. The results are valuable for approximating the excursion probability in family-wise error control and for computing p-values in peak inference.
KW - Critical points
KW - Euler characteristic
KW - Gaussian random fields
KW - Height distribution
KW - Matérn
KW - Smooth
UR - http://www.scopus.com/inward/record.url?scp=85188730289&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85188730289&partnerID=8YFLogxK
U2 - 10.1016/j.spl.2024.110116
DO - 10.1016/j.spl.2024.110116
M3 - Article
AN - SCOPUS:85188730289
SN - 0167-7152
VL - 210
JO - Statistics and Probability Letters
JF - Statistics and Probability Letters
M1 - 110116
ER -