Reynolds stress closure for nonequilibrium effects in turbulent flows

Peter E. Hamlington, Werner J. Dahm

Research output: Contribution to journalArticlepeer-review

51 Scopus citations


From consideration of turbulence anisotropy dynamics due to spatial or temporal variations in the mean strain rate, a new Reynolds stress closure for nonequilibrium effects in turbulent flows has been developed. This closure, formally derived from the Reynolds stress anisotropy transport equation, results in an effective strain rate tensor that accounts for the strain rate history to which the turbulence has been subjected. In contrast to prior nonequilibrium models that have sought to address nonequilibrium effects via changes in the eddy viscosity, the present approach accounts for nonequilibrium effects in the fundamental relation between the anisotropy tensor and the strain rate tensor. The time-local form of the nonequilibrium closure can be readily implemented in place of the classical equilibrium Boussinesq closure on which most existing computational frameworks are currently based. This new closure is applied here to four substantially different classes of nonequilibrium test problems. Results show dramatically improved agreement with experimental and computational data, without the need to vary any model parameters, when compared with the standard equilibrium closure and with various prior nonequilibrium closures.

Original languageEnglish (US)
Article number115101
JournalPhysics of Fluids
Issue number11
StatePublished - 2008
Externally publishedYes

ASJC Scopus subject areas

  • Computational Mechanics
  • Condensed Matter Physics
  • Mechanics of Materials
  • Mechanical Engineering
  • Fluid Flow and Transfer Processes


Dive into the research topics of 'Reynolds stress closure for nonequilibrium effects in turbulent flows'. Together they form a unique fingerprint.

Cite this