Radio emission from dark matter annihilation in the Large Magellanic Cloud

Beatriz B. Siffert, Angelo Limone, Enrico Borriello, Giuseppe Longo, Gennaro Miele

Research output: Contribution to journalArticlepeer-review

20 Scopus citations


The Large Magellanic Cloud (LMC), at only 50 kpc away from us and known to be dark matter dominated, is clearly an interesting place where to search for dark matter annihilation signals. In this paper, we estimate the synchrotron emission due to weakly interacting massive particle (WIMP) annihilation in the halo of the LMC at two radio frequencies, 1.4 and 4.8 GHz, and compare it to the observed emission, in order to impose constraints in the WIMP mass versus annihilation cross-section plane. We use available Faraday rotation data from background sources to estimate the magnitude of the magnetic field in different regions of the LMC's disc, where we calculate the radio signal due to dark matter annihilation. We account for the e+e- energy losses due to synchrotron, inverse Compton scattering and bremsstrahlung, using the observed hydrogen and dust temperature distribution on the LMC to estimate their efficiency. The extensive use of observations, allied with conservative choices adopted in all the steps of the calculation, allows us to obtain very realistic constraints.

Original languageEnglish (US)
Pages (from-to)2463-2471
Number of pages9
JournalMonthly Notices of the Royal Astronomical Society
Issue number4
StatePublished - Feb 2011
Externally publishedYes


  • Dark matter
  • Galaxies: individual: Large Magellanic Cloud
  • Magnetic fields
  • Radio continuum: galaxies

ASJC Scopus subject areas

  • Astronomy and Astrophysics
  • Space and Planetary Science


Dive into the research topics of 'Radio emission from dark matter annihilation in the Large Magellanic Cloud'. Together they form a unique fingerprint.

Cite this