Predicting the readability of physicians’ secure messages to improve health communication using novel linguistic features: Findings from the ECLIPPSE study

Scott A. Crossley, Renu Balyan, Jennifer Liu, Andrew J. Karter, Danielle McNamara, Dean Schillinger

Research output: Contribution to journalArticlepeer-review

7 Scopus citations

Abstract

Background: Low literacy skills impact important aspects of communication, including health-related information exchanges. Unsuccessful communication on the part of physician or patient contributes to lower quality of care, is associated with poorer chronic disease control, jeopardizes patient safety and can lead to unfavorable healthcare utilization patterns. To date, very little research has focused on digital communication between physicians and patients, such as secure messages sent via electronic patient portals. Method: The purpose of the current study is to develop an automated readability formula to better understand what elements of physicians’ digital messages make them more or less difficult to understand. The formula is developed using advanced natural language processing (NLP) to predict human ratings of physician text difficulty. Results: The results indicate that NLP indices that capture a diverse set of linguistic features predict the difficulty of physician messages better than classic readability tools such as Flesch Kincaid Grade Level. Our results also provide information about the textual features that best explain text readability. Conclusion: Implications for how the readability formula could provide feedback to physicians to improve digital health communication by promoting linguistic concordance between physician and patient are discussed.

Original languageEnglish (US)
Pages (from-to)344-356
Number of pages13
JournalJournal of Communication in Healthcare
Volume13
Issue number4
DOIs
StatePublished - 2020

Keywords

  • Health literacy
  • chronic care management
  • communication
  • diabetes
  • electronic health records
  • health care quality
  • linguistics
  • machine learning
  • natural language processing
  • secure messaging

ASJC Scopus subject areas

  • Communication
  • Public Health, Environmental and Occupational Health
  • Health Information Management

Fingerprint

Dive into the research topics of 'Predicting the readability of physicians’ secure messages to improve health communication using novel linguistic features: Findings from the ECLIPPSE study'. Together they form a unique fingerprint.

Cite this