Abstract
Model-reduction problems which consider preserving closed-loop performance (H 2, H ∞, and μm) in the presence of reduction error are developed. These are formulated as weighted multiplicative error problems (for plant reduction) and weighted additive error problems (for controller reduction), with the weight function incorporating explicitly such control information as the desired sensitivity operator bound, the setpoint/disturbance spectrum, and the process uncertainties. These problems are efficiently solved using the frequency-weighted balanced realization technique. The benefits of these reduction problems are illustrated with examples taken from the control of a binary distillation column.
Original language | English (US) |
---|---|
Title of host publication | Proceedings of the IEEE Conference on Decision and Control |
Publisher | Publ by IEEE |
Pages | 1143-1148 |
Number of pages | 6 |
State | Published - 1988 |
Externally published | Yes |
Event | Proceedings of the 27th IEEE Conference on Decision and Control - Austin, TX, USA Duration: Dec 7 1988 → Dec 9 1988 |
Other
Other | Proceedings of the 27th IEEE Conference on Decision and Control |
---|---|
City | Austin, TX, USA |
Period | 12/7/88 → 12/9/88 |
ASJC Scopus subject areas
- Chemical Health and Safety
- Control and Systems Engineering
- Safety, Risk, Reliability and Quality