Performance of the adaptive sidelobe blanker detection algorithm in nonhomogeneous environments

Christ D. Richmond

Research output: Contribution to journalArticlepeer-review


The two-dimensional adaptive sidelobe blanker (ASB) detection algorithm was developed through experimentation as an extenuate for false alarms caused by undernulled interference encountered when applying the adaptive matched filter (AMF) in non-homogeneous environments. The algorithm's utility has been demonstrated empirically. Considering theoretic performance analyses of the ASB detection algorithm as well as the AMF, the generalized likelihood ratio test (GLRT), and the adaptive cosine estimator (ACE), under nonideal conditions, can become fairly intractable rather quickly, especially in an adaptive processing context involving covariance estimation. In this paper, however, we have developed and exploited a theoretic framework through which the performance of these algorithms under non-homogeneous conditions can be examined theoretically. It is demonstrated through theoretic analysis that in the presence of undernulled interference, the ASB is a pliable false alarm regulatory (FAR) detector that maintains good target sensitivity. A viable method of ASB threshold selection is also presented and demonstrated.

Original languageEnglish (US)
Pages (from-to)280
Number of pages1
JournalIEEE Transactions on Signal Processing
Issue number1
StatePublished - 1999
Externally publishedYes

ASJC Scopus subject areas

  • Signal Processing
  • Electrical and Electronic Engineering


Dive into the research topics of 'Performance of the adaptive sidelobe blanker detection algorithm in nonhomogeneous environments'. Together they form a unique fingerprint.

Cite this