On-demand location aware multicast (OLAM) for ad hoc networks

Stefano Basagni, Imrich Chlamtac, Violet R. Syrotiuk, Rodeen Talebi

Research output: Chapter in Book/Report/Conference proceedingConference contribution

19 Scopus citations


This paper introduces OLAM, a novel On-demand Location Aware Multicast protocol for ad hoc networks. The protocol assumes that, through the use of positioning system devices, such as Global Positioning System (GPS) devices, each node knows its own position and the current (global) time, and it is able to efficiently distribute these measures, including its current transmission radius, to all other nodes. As the measures are received, each node updates its local snapshot of the complete network topology. When a packet is to be multicast to a group, a heuristic is then used to locally compute the Steiner (i.e., multicast) tree for the addressed multicast group based on the snapshot rather than maintaining the tree in a distributed manner. The resulting Steiner tree is then optimally encoded by using its unique Prüfer sequence and included along with the packet, extending the length of the header by no more than the header of packets in source routing (unicast) techniques. All local computations are executed using efficient (i.e., polynomial time) algorithms. The protocol has been simulated in ad hoc networks with 30 and 60 nodes and with different multicast group sizes. We show that OLAM delivers packets to all the nodes in a destination group in more than 85% of the cases. Furthermore, compared to flooding, OLAM achieves improvements of up to 50% on multicast completion delay.

Original languageEnglish (US)
Title of host publication2000 IEEE Wireless Communications and Networking Conference
Number of pages6
StatePublished - 2000
Externally publishedYes
Event2000 IEEE Wireless Communications and Networking Conference - Chicago, IL, United States
Duration: Sep 23 2000Sep 28 2000

Publication series

Name2000 IEEE Wireless Communications and Networking Conference


Other2000 IEEE Wireless Communications and Networking Conference
Country/TerritoryUnited States
CityChicago, IL

ASJC Scopus subject areas

  • Engineering(all)


Dive into the research topics of 'On-demand location aware multicast (OLAM) for ad hoc networks'. Together they form a unique fingerprint.

Cite this