Near-infrared Supernova Ia Distances: Host Galaxy Extinction and Mass-step Corrections Revisited

J. Johansson, S. B. Cenko, O. D. Fox, S. Dhawan, A. Goobar, V. Stanishev, N. Butler, W. H. Lee, A. M. Watson, U. C. Fremling, M. M. Kasliwal, P. E. Nugent, T. Petrushevska, J. Sollerman, L. Yan, J. Burke, G. Hosseinzadeh, D. A. Howell, C. McCully, S. Valenti

Research output: Contribution to journalArticlepeer-review

17 Scopus citations


We present optical and near-infrared (NIR, Y-, J-, H-band) observations of 42 Type Ia supernovae (SNe Ia) discovered by the untargeted intermediate Palomar Transient Factory survey. This new data set covers a broad range of redshifts and host galaxy stellar masses, compared to previous SN Ia efforts in the NIR. We construct a sample, using also literature data at optical and NIR wavelengths, to examine claimed correlations between the host stellar masses and the Hubble diagram residuals. The SN magnitudes are corrected for host galaxy extinction using either a global total-to-selective extinction ratio, R V = 2.0, for all SNe, or a best-fit R V for each SN individually. Unlike previous studies that were based on a narrower range in host stellar mass, we do not find evidence for a “mass step,” between the color- and stretch-corrected peak J and H magnitudes for galaxies below and above . However, the mass step remains significant (3σ) at optical wavelengths (g, r, i) when using a global R V , but vanishes when each SN is corrected using their individual best-fit R V . Our study confirms the benefits of the NIR SN Ia distance estimates, as these are largely exempted from the empirical corrections dominating the systematic uncertainties in the optical.

Original languageEnglish (US)
Article number237
JournalAstrophysical Journal
Issue number2
StatePublished - Dec 20 2021
Externally publishedYes

ASJC Scopus subject areas

  • Astronomy and Astrophysics
  • Space and Planetary Science


Dive into the research topics of 'Near-infrared Supernova Ia Distances: Host Galaxy Extinction and Mass-step Corrections Revisited'. Together they form a unique fingerprint.

Cite this