TY - GEN
T1 - Multiscale modeling of silicon heterojunction solar cells
AU - Muralidharan, Pradyumna
AU - Bowden, Stuart
AU - Goodnick, Stephen
AU - Vasileska, Dragica
N1 - Funding Information:
This material is based upon work primarily supported by the Engineering Research Center Program of the National Science Foundation and the Office of Energy Efficiency and Renewable Energy of the Department of Energy under NSF Cooperative Agreement No. EEC-1041895. Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect those of the National Science Foundation or Department of Energy.
Publisher Copyright:
© 2017 IEEE.
PY - 2017
Y1 - 2017
N2 - In recent years, silicon photovoltaic technologies utilizing amorphous silicon (a-Si) to form heterojunction solar cells with thin intrinsic (HIT) passivating layers have consistently demonstrated high efficiencies (>20%) including a world record efficiency of 25.6%, high fill factor's and high open circuit voltages (V OC > 700 mV). Further improvements in efficiency require a rigorous approach to better understand and improve device behavior. In this work we analyze the transport and device performance of heterojunction cells by applying a multiscale simulation methodology. Our multiscale solver consists of three primary domains, namely; the drift-diffusion (DD) domain, the ensemble Monte Carlo (EMC) and the kinetic Monte Carlo (KMC) domain. Using our multiscale methodology we investigate the role of midgap defects in the a-Si and interface defects at the crystalline silicon (c-Si) and a-Si heterointerface. Simulations indicate that recombination at the interface is a key limiting factor in device performance and contributes to the 'S' shaped current voltage characteristic. We have also used commercial device simulator SILVACO to investigate the role of surface potential at the heterointerface.
AB - In recent years, silicon photovoltaic technologies utilizing amorphous silicon (a-Si) to form heterojunction solar cells with thin intrinsic (HIT) passivating layers have consistently demonstrated high efficiencies (>20%) including a world record efficiency of 25.6%, high fill factor's and high open circuit voltages (V OC > 700 mV). Further improvements in efficiency require a rigorous approach to better understand and improve device behavior. In this work we analyze the transport and device performance of heterojunction cells by applying a multiscale simulation methodology. Our multiscale solver consists of three primary domains, namely; the drift-diffusion (DD) domain, the ensemble Monte Carlo (EMC) and the kinetic Monte Carlo (KMC) domain. Using our multiscale methodology we investigate the role of midgap defects in the a-Si and interface defects at the crystalline silicon (c-Si) and a-Si heterointerface. Simulations indicate that recombination at the interface is a key limiting factor in device performance and contributes to the 'S' shaped current voltage characteristic. We have also used commercial device simulator SILVACO to investigate the role of surface potential at the heterointerface.
KW - Amorphous silicon
KW - Device modeling
KW - Heterojunction
KW - Solar cells
UR - http://www.scopus.com/inward/record.url?scp=85048478622&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85048478622&partnerID=8YFLogxK
U2 - 10.1109/PVSC.2017.8366841
DO - 10.1109/PVSC.2017.8366841
M3 - Conference contribution
AN - SCOPUS:85048478622
T3 - 2017 IEEE 44th Photovoltaic Specialist Conference, PVSC 2017
SP - 1
EP - 5
BT - 2017 IEEE 44th Photovoltaic Specialist Conference, PVSC 2017
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 44th IEEE Photovoltaic Specialist Conference, PVSC 2017
Y2 - 25 June 2017 through 30 June 2017
ER -