Multiphysics simulation of microscale copper printing by confined electrodeposition using a nozzle array

Scott Burlison, Majid Minary-Jolandan

Research output: Contribution to journalArticlepeer-review

2 Scopus citations

Abstract

3D printing of metals at the microscale and nanoscale is crucial to produce high-density interconnects and intricate structures in electronic devices. Conventional melting and sintering processes are not suitable for these scales due to a reliance on individual metal particles in the size range of tens of micrometers. Confined electrodeposition (CED) is an established alternative to conventional metal 3D printing processes in which an electrolyte is used to selectively induce deposition of the metal on the printing surface. However, commercialization and efficiency of this process have been limited due to a reliance on sub-micrometer nozzles to achieve desirable deposition rates and single nozzle to achieve uniformity of printed structures. Here, we address these challenges by computationally analyzing an array of microscale nozzles. We tailor the convection within the electrolyte to alter both deposition rate and geometric uniformity of the printed structures. The results show that for large nozzles the evaporation alone is not sufficient to obtain high deposition rates, yet an external pressure can be used to increase deposition and alter uniformity (thickness) of printed structures. Our results can be used to design and analyze new experiments toward parallel multi-nozzle deposition using CED toward high-throughput metal printing.

Original languageEnglish (US)
Article number055303
JournalJournal of Applied Physics
Volume131
Issue number5
DOIs
StatePublished - Feb 7 2022

ASJC Scopus subject areas

  • General Physics and Astronomy

Fingerprint

Dive into the research topics of 'Multiphysics simulation of microscale copper printing by confined electrodeposition using a nozzle array'. Together they form a unique fingerprint.

Cite this