Multi-ion beam lithography and processing studies

Bill R. Appleton, Sefaattin Tongay, Maxime Lemaitre, Brent Gila, David Hays, Andrew Scheuermann, Joel Fridmann

Research output: Chapter in Book/Report/Conference proceedingConference contribution

3 Scopus citations


The University of Florida (UF) have recently collaborated with Raith Inc. to modify Raith's ion beam lithography, nanofabrication and engineering (ionLiNE) station that utilizes only Ga ions, into a multi-ion beam system (MionLiNE) by adding the capabilities to use liquid metal alloy sources (LMAIS) to access a variety of ions and an EXB filter for mass separation. The MionLiNE modifications discussed below provide a wide range of spatial and temporal precision that can be used to investigate ion solid interactions under extended boundary conditions, as well as for ion lithography and nanofabrication. Here we demonstrate the ion beam lithographic capabilities of the MionLiNE for fabricating patterned arrays of Au and Si nanocrystals, with nanoscale dimensions, in SiO2 substrates, by direct implantation; and show that the same direct-write/maskless-implantation features can be used for in situ fabrication of nanoelectronic devices. Additionally, the spatial and temporal capabilities of the MionLiNE are used to explore the effects of dose rate on the long-standing surface morphological transformation that occurs in ion bombarded Ge.

Original languageEnglish (US)
Title of host publicationIon Beams - New Applications from Mesoscale to Nanoscale
Number of pages12
StatePublished - 2012
Externally publishedYes
Event2011 MRS Spring Meeting - San Francisco, CA, United States
Duration: Apr 25 2011Apr 29 2011

Publication series

NameMaterials Research Society Symposium Proceedings
ISSN (Print)0272-9172


Other2011 MRS Spring Meeting
Country/TerritoryUnited States
CitySan Francisco, CA

ASJC Scopus subject areas

  • General Materials Science
  • Condensed Matter Physics
  • Mechanics of Materials
  • Mechanical Engineering


Dive into the research topics of 'Multi-ion beam lithography and processing studies'. Together they form a unique fingerprint.

Cite this