miR155 regulation of behavior, neuropathology, and cortical transcriptomics in Alzheimer's disease

Ben Readhead, Jean Vianney Haure-Mirande, Diego Mastroeni, Mickael Audrain, Tomas Fanutza, Soong H. Kim, Robert D. Blitzer, Sam Gandy, Joel T. Dudley, Michelle E. Ehrlich

Research output: Contribution to journalArticlepeer-review

21 Scopus citations


MicroRNAs are recognized as important regulators of many facets of physiological brain function while also being implicated in the pathogenesis of several neurological disorders. Dysregulation of miR155 is widely reported across a variety of neurodegenerative conditions, including Alzheimer’s disease (AD), Parkinson’s disease, amyotrophic lateral sclerosis, and traumatic brain injury. In previous work, we observed that experimentally validated miR155 gene targets were consistently enriched among genes identified as differentially expressed across multiple brain tissue and disease contexts. In particular, we found that human herpesvirus-6A (HHV-6A) suppressed miR155, recapitulating reports of miR155 inhibition by HHV-6A in infected T-cells, thyrocytes, and natural killer cells. In earlier studies, we also reported the effects of constitutive deletion of miR155 on accelerating the accumulation of Aβ deposits in 4-month-old APP/PSEN1 mice. Herein, we complete the cumulative characterization of transcriptomic, electrophysiological, neuropathological, and learning behavior profiles from 4-, 8- and 10-month-old WT and APP/PSEN1 mice in the absence or presence of miR155. We also integrated human post-mortem brain RNA-sequences from four independent AD consortium studies, together comprising 928 samples collected from six brain regions. We report that gene expression perturbations associated with miR155 deletion in mouse cortex are in aggregate observed to be concordant with AD-associated changes across these independent human late-onset AD (LOAD) data sets, supporting the relevance of our findings to human disease. LOAD has recently been formulated as the clinicopathological manifestation of a multiplex of genetic underpinnings and pathophysiological mechanisms. Our accumulated data are consistent with such a formulation, indicating that miR155 may be uniquely positioned at the intersection of at least four components of this LOAD “multiplex”: (1) innate immune response pathways; (2) viral response gene networks; (3) synaptic pathology; and (4) proamyloidogenic pathways involving the amyloid β peptide (Aβ).

Original languageEnglish (US)
Pages (from-to)295-315
Number of pages21
JournalActa Neuropathologica
Issue number3
StatePublished - Sep 1 2020

ASJC Scopus subject areas

  • Pathology and Forensic Medicine
  • Clinical Neurology
  • Cellular and Molecular Neuroscience


Dive into the research topics of 'miR155 regulation of behavior, neuropathology, and cortical transcriptomics in Alzheimer's disease'. Together they form a unique fingerprint.

Cite this