Abstract
This paper depicts the application of symbolically computed Lyapunov-Perron (L-P) transformation to solve linear and nonlinear quasi-periodic systems. The L-P transformation converts a linear quasi-periodic system into a time-invariant one. State augmentation and the method of normal forms are used to compute the L-P transformation analytically. The state augmentation approach converts a linear quasi-periodic system into a nonlinear time-invariant system as the quasi-periodic parametric excitation terms are replaced by "fictitious" states. This nonlinear system can be reduced to a linear system via normal forms in the absence of resonances. In this process, one obtains near identity transformation that contains fictitious states. Once the quasi-periodic terms replace the fictitious states they represent, the near identity transformation is converted to the L-P transformation. The L-P transformation can be used to solve linear quasi-periodic systems with external excitation and nonlinear quasi-periodic systems. Two examples are included in this work, a commutative quasi-periodic system and a non-commutative Mathieu-Hill type quasi-periodic system. The results obtained via the L-P transformation approach match very well with the numerical integration and analytical results.
Original language | English (US) |
---|---|
Article number | 041015 |
Journal | Journal of Vibration and Acoustics, Transactions of the ASME |
Volume | 143 |
Issue number | 4 |
DOIs | |
State | Published - Aug 2021 |
Keywords
- Dynamics
- Mechatronics and electro-mechanical systems
- Nonlinear vibration
- Stability
- Vibration control
ASJC Scopus subject areas
- Acoustics and Ultrasonics
- Mechanics of Materials
- Mechanical Engineering