TY - JOUR
T1 - Linking vegetation patterns to environmental gradients and human impacts in a mediterranean-type island ecosystem
AU - Dahlin, Kyla M.
AU - Asner, Gregory P.
AU - Field, Christopher B.
N1 - Funding Information:
Acknowledgments Many thanks to T. Kennedy-Bowdoin and D. Knapp for data processing and computing assistance. Thanks to P. Vitousek and S. Morrison for comments on an earlier draft of this manuscript, to R. Perroy, the Pacific Section of the Society for Sedimentary Geology, and the Pacific Section of the American Association of Petroleum Geologists for sharing spatial data, and to The Nature Conservancy for supporting this work. This work was performed (in part) at the University of California Natural Reserve System Santa Cruz Island Reserve on property owned and managed by The Nature Conservancy. The National Center for Atmospheric Research is sponsored by the NSF. The Carnegie Airborne Observatory is made possible by the Avatar Alliance Foundation, Grantham Foundation for the Protection of the Environment, John D. and Catherine T. MacArthur Foundation, Gordon and Betty Moore Foundation, W. M. Keck Foundation, Margaret A. Cargill Foundation, Mary Anne Nyburg Baker and G. Leonard Baker Jr., and William R. Hearst III.
Publisher Copyright:
© 2014, The Author(s).
PY - 2014/11
Y1 - 2014/11
N2 - Vegetation patterns at the landscape scale are shaped by myriad processes and historical events, and understanding the relative importance of these processes aids in predicting current and future plant distributions. To quantify the influence of different environmental and anthropogenic patterns on observed vegetation patterns, we used simultaneous autoregressive modeling to analyze data collected by the Carnegie Airborne Observatory over Santa Cruz Island (SCI; California, USA). SCI is a large continental island, and its limited suite of species and well documented land use history allowed us to consider many potential determinants of vegetation patterns, such as topography, substrate, and historical grazing intensity. As a metric of vegetation heterogeneity, we used the normalized difference vegetation index (NDVI) stratified into three vegetation height classes using LiDAR (short, medium, and tall). In the SAR models topography and substrate type were important controls, together explaining 8–15 % of the total variation in NDVI, but historical grazing and spatial autocorrelation were also key components of the models, together explaining 17–21 % of the variation in NDVI. Optimal spatial autocorrelation distances in the short and medium height vegetation models (600–700 m) were similar to the home range sizes of two crucial seed dispersers on the island– the island fox (Urocyon littoralis santacruzae) and the island scrub-jay (Aphelocoma insularis)—suggesting that these animals may be important drivers of the island’s vegetation patterns. This study highlights the importance of dynamic processes like dispersal limitation and disturbance history in determining present-day vegetation patterns.
AB - Vegetation patterns at the landscape scale are shaped by myriad processes and historical events, and understanding the relative importance of these processes aids in predicting current and future plant distributions. To quantify the influence of different environmental and anthropogenic patterns on observed vegetation patterns, we used simultaneous autoregressive modeling to analyze data collected by the Carnegie Airborne Observatory over Santa Cruz Island (SCI; California, USA). SCI is a large continental island, and its limited suite of species and well documented land use history allowed us to consider many potential determinants of vegetation patterns, such as topography, substrate, and historical grazing intensity. As a metric of vegetation heterogeneity, we used the normalized difference vegetation index (NDVI) stratified into three vegetation height classes using LiDAR (short, medium, and tall). In the SAR models topography and substrate type were important controls, together explaining 8–15 % of the total variation in NDVI, but historical grazing and spatial autocorrelation were also key components of the models, together explaining 17–21 % of the variation in NDVI. Optimal spatial autocorrelation distances in the short and medium height vegetation models (600–700 m) were similar to the home range sizes of two crucial seed dispersers on the island– the island fox (Urocyon littoralis santacruzae) and the island scrub-jay (Aphelocoma insularis)—suggesting that these animals may be important drivers of the island’s vegetation patterns. This study highlights the importance of dynamic processes like dispersal limitation and disturbance history in determining present-day vegetation patterns.
KW - AVIRIS
KW - Airborne remote sensing
KW - Carnegie airborne observatory
KW - Ecosystem assembly
KW - Simultaneous autoregressive modeling
KW - Spatial autocorrelation
UR - http://www.scopus.com/inward/record.url?scp=84939898105&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84939898105&partnerID=8YFLogxK
U2 - 10.1007/s10980-014-0076-1
DO - 10.1007/s10980-014-0076-1
M3 - Article
AN - SCOPUS:84939898105
SN - 0921-2973
VL - 29
SP - 1571
EP - 1585
JO - Landscape Ecology
JF - Landscape Ecology
IS - 9
ER -