Intrinsic 3D Dynamic Surface Tracking based on Dynamic Ricci Flow and Teichmüller Map

Xiaokang Yu, Na Lei, Yalin Wang, Xianfeng Gu

Research output: Chapter in Book/Report/Conference proceedingConference contribution

7 Scopus citations

Abstract

3D dynamic surface tracking is an important research problem and plays a vital role in many computer vision and medical imaging applications. However, it is still challenging to efficiently register surface sequences which has large deformations and strong noise. In this paper, we propose a novel automatic method for non-rigid 3D dynamic surface tracking with surface Ricci flow and Teichmiiller map methods. According to quasi-conformal Teichmiiller theory, the Techmüller map minimizes the maximal dilation so that our method is able to automatically register surfaces with large deformations. Besides, the adoption of Delaunay triangulation and quadrilateral meshes makes our method applicable to low quality meshes. In our work, the 3D dynamic surfaces are acquired by a high speed 3D scanner. We first identified sparse surface features using machine learning methods in the texture space. Then we assign landmark features with different curvature settings and the Riemannian metric of the surface is computed by the dynamic Ricci flow method, such that all the curvatures are concentrated on the feature points and the surface is flat everywhere else. The registration among frames is computed by the Teichmiiller mappings, which aligns the feature points with least angle distortions. We apply our new method to multiple sequences of 3D facial surfaces with large expression deformations and compare them with two other state-of-the-art tracking methods. The effectiveness of our method is demonstrated by the clearly improved accuracy and efficiency.

Original languageEnglish (US)
Title of host publicationProceedings - 2017 IEEE International Conference on Computer Vision, ICCV 2017
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages5400-5408
Number of pages9
ISBN (Electronic)9781538610329
DOIs
StatePublished - Dec 22 2017
Event16th IEEE International Conference on Computer Vision, ICCV 2017 - Venice, Italy
Duration: Oct 22 2017Oct 29 2017

Publication series

NameProceedings of the IEEE International Conference on Computer Vision
Volume2017-October
ISSN (Print)1550-5499

Other

Other16th IEEE International Conference on Computer Vision, ICCV 2017
Country/TerritoryItaly
CityVenice
Period10/22/1710/29/17

ASJC Scopus subject areas

  • Software
  • Computer Vision and Pattern Recognition

Fingerprint

Dive into the research topics of 'Intrinsic 3D Dynamic Surface Tracking based on Dynamic Ricci Flow and Teichmüller Map'. Together they form a unique fingerprint.

Cite this