TY - JOUR
T1 - Influence of initial soil moisture and vegetation conditions on monsoon precipitation events in northwest México
AU - Xiang, Tiantian
AU - Vivoni, Enrique
AU - Gochis, David J.
N1 - Funding Information:
We acknowledge the funding support from the NOAA Climate Program Office (Grant NA10OAR4310165), NASA Headquarters under the Earth and Space Science Fellowship program (Grant NNX15AP05H) and NSF International Research Experience for Students program (Grants OISE 0553852 and OISE 0809946). We acknowledge support from Michael Barlage, Aubrey Dugger and the rest of the WRF-Hydro development team at the National Center for Atmospheric Research. We thank the excellent comments from reviewers that helped improve an earlier version of the work
Funding Information:
Las condiciones de la superficie del suelo, incluyendo el estado de la humedad y la vegetación, desempeñan funciones importantes en el desarrollo de la capa límite diurna y la formación de precipitación convectiva. En áreas con fases estacionales de radiación y precipitación, tales como la región del monzón de Norteamérica (NAM, por sus siglas en inglés), es difícil ofrecer un diagnóstico de la contribución de cada fenómeno por separado, dada la concurrencia de humedad del suelo elevada y el reverdecimiento de la vegetación durante la temporada cálida. En el presente estudio, se utilizó el sistema de modelación WRF-Hydro para simular las interacciones entre la superficie del suelo y la atmósfera en una amplia cuenca del noroeste de México sujeta a la influencia del NAM. Después de comparar las simulaciones acopladas con un producto de reanálisis con corrección de sesgo correspondiente a dos periodos de verano en 2014 y 2013, se llevó a cabo una serie de experimentos de modelación a escala de tormenta que modifican de forma independiente las condiciones iniciales de humedad del suelo y vegetación. Los resultados muestran que las anomalías de ambas variables pueden favorecer la precipitación convectiva, aunque su influencia en el desarrollo de la capa límite es diverso. Posteriormente se hizo un diagnóstico de los mecanismos suelo-atmósfera mediante los cuales los estados de humedad del suelo favorecen la precipitación convectiva. En presencia de anomalías importantes de la superficie del suelo, como humedad inicial igual a la capacidad de campo o el estado máximo de verdor de la vegetación, la precipitación acumulada (48 h) a escala de tormenta puede incrementarse hasta 26 mm. Como resultado, los avances en la forma en que pueden inicializarse las condiciones de la superficie del suelo, ya sea mediante percepción remota o a través de una red de sensores, es fundamental para mejorar los sistemas de pronóstico de precipitaciones en la región del NAM.
Publisher Copyright:
© 2018 Universidad Nacional Autónoma de México
PY - 2018
Y1 - 2018
N2 - Land surface conditions including soil moisture and vegetation states are expected to play important roles in the development of the daytime boundary layer and the formation of convective precipitation. For areas with an in-phase seasonality of radiation and precipitation, such as the North American Monsoon (NAM) region, diagnosing the direct contributions of each effect is difficult given the co-occurrence of high soil moisture and vegetation greening during the warm season. In this study, we use the WRF-Hydro modeling system to simulate the interactions between the land surface and atmosphere within a large watershed in northwest México subject to the influence of the NAM. After testing the coupled simulations against a bias-corrected reanalysis product for two summer periods in 2004 and 2013, we conduct a series of storm-scale modeling experiments that separately vary the initial soil moisture and vegetation conditions. Results reveal that both soil moisture and vegetation anomalies can positively affect convective precipitation, although their influence on boundary layer development is different. We then diagnose the specific land-atmosphere mechanisms by which the land surface states positively influence convective precipitation. Under high land surface anomalies, such as initial soil moisture equal to field capacity or the maximum vegetation greening state, storm-scale (48 h) precipitation accumulations can be increased up to 26 mm. As a result, improvements in how land surface conditions are initialized either through remote sensing or sensor networks are critical for enhancing precipitation prediction systems in the NAM region. , Centro de Ciencias de la Atmósfera.
AB - Land surface conditions including soil moisture and vegetation states are expected to play important roles in the development of the daytime boundary layer and the formation of convective precipitation. For areas with an in-phase seasonality of radiation and precipitation, such as the North American Monsoon (NAM) region, diagnosing the direct contributions of each effect is difficult given the co-occurrence of high soil moisture and vegetation greening during the warm season. In this study, we use the WRF-Hydro modeling system to simulate the interactions between the land surface and atmosphere within a large watershed in northwest México subject to the influence of the NAM. After testing the coupled simulations against a bias-corrected reanalysis product for two summer periods in 2004 and 2013, we conduct a series of storm-scale modeling experiments that separately vary the initial soil moisture and vegetation conditions. Results reveal that both soil moisture and vegetation anomalies can positively affect convective precipitation, although their influence on boundary layer development is different. We then diagnose the specific land-atmosphere mechanisms by which the land surface states positively influence convective precipitation. Under high land surface anomalies, such as initial soil moisture equal to field capacity or the maximum vegetation greening state, storm-scale (48 h) precipitation accumulations can be increased up to 26 mm. As a result, improvements in how land surface conditions are initialized either through remote sensing or sensor networks are critical for enhancing precipitation prediction systems in the NAM region. , Centro de Ciencias de la Atmósfera.
KW - Hydrometeorology
KW - Land-atmosphere interactions
KW - North American Monsoon (NAM)
KW - Surface energy balance
KW - Weather Research and Forecasting (WRF) model
UR - http://www.scopus.com/inward/record.url?scp=85043386827&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85043386827&partnerID=8YFLogxK
U2 - 10.20937/ATM.2018.31.01.03
DO - 10.20937/ATM.2018.31.01.03
M3 - Article
AN - SCOPUS:85043386827
SN - 0187-6236
VL - 31
SP - 25
EP - 45
JO - Atmosfera
JF - Atmosfera
IS - 1
ER -