In-flight geometric calibration of the Lunar reconnaissance orbiter camera

E. J. Speyerer, R. V. Wagner, Mark Robinson, D. C. Humm, K. Becker, J. Anderson, P. Thomas

Research output: Chapter in Book/Report/Conference proceedingConference contribution

13 Scopus citations


The Lunar Reconnaissance Orbiter Camera (LROC) consists of two imaging systems that provide synoptic and high resolution imaging of the lunar surface. The Wide Angle Camera (WAC) is a seven color push frame imager with a 90° field of view in monochrome mode and 60° field of view in color mode. From the nominal 50 km polar orbit, the WAC acquires images with a nadir pixel scale of 75 m for each visible band and 384 m for the two ultraviolet bands. The Narrow Angle Camera (NAC) consists of two identical cameras capable of acquiring images with a pixel scale of 0.5 to 1.0 m from a 50 km orbit. Each camera was geometrically calibrated prior to launch at Malin Space Science Systems in San Diego, California. Using thousands of images acquired since launch in June of 2009, improvements to the relative and absolute pointing of the twin NACs were made allowing images on the surface to be projected with an accuracy of 20 meters. Further registration of WAC and NAC images allowed the derivation of a new distortion model and pointing updates for the WAC, thus enabling sub-pixel accuracy in projected WAC images.

Original languageEnglish (US)
Title of host publicationInternational Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives
PublisherInternational Society for Photogrammetry and Remote Sensing
Number of pages6
StatePublished - 2012
Event22nd Congress of the International Society for Photogrammetry and Remote Sensing, ISPRS 2012 - Melbourne, Australia
Duration: Aug 25 2012Sep 1 2012


Other22nd Congress of the International Society for Photogrammetry and Remote Sensing, ISPRS 2012


  • Accuracy
  • Calibration
  • Distortion
  • Geometric
  • Optical
  • Registration
  • Sensor
  • Temperature

ASJC Scopus subject areas

  • Information Systems
  • Geography, Planning and Development


Dive into the research topics of 'In-flight geometric calibration of the Lunar reconnaissance orbiter camera'. Together they form a unique fingerprint.

Cite this