High-performance reactive fluid flow simulations using adaptive mesh refinement on thousands of processors

A. C. Calder, B. C. Curtis, L. J. Dursi, B. Fryxell, G. Henry, P. MacNeice, K. Olson, P. Ricker, R. Rosner, F. X. Timmes, H. M. Tufo, J. W. Truran, M. Zingale

Research output: Chapter in Book/Report/Conference proceedingConference contribution

15 Scopus citations


We present simulations and performance results of nuclear burning fronts in supernovae on the largest domain and at the finest spatial resolution studied to date. These simulations were performed on the Intel ASCI-Red machine at Sandia National Laboratories using FLASH, a code developed at the Center for Astrophysical Thermonuclear Flashes at the University of Chicago. FLASH is a modular, adaptive mesh, parallel simulation code capable of handling compressible, reactive fluid flows in astrophysical environments. FLASH is written primarily in Fortran 90, uses the Message-Passing Interface library for inter-processor communication and portability, and employs the PARAMESH package to manage a block-structured adaptive mesh that places blocks only where resolution is required and tracks rapidly changing flow features, such as detonation fronts, with ease. We describe the key algorithms and their implementation as well as the optimizations required to achieve sustained performance of 238 GFLOPS on 6420 processors of ASCI-Red in 64 bit arithmetic.

Original languageEnglish (US)
Title of host publicationSC 2000 - Proceedings of the 2000 ACM/IEEE Conference on Supercomputing
PublisherAssociation for Computing Machinery
ISBN (Electronic)0780398025
StatePublished - 2000
Externally publishedYes
Event2000 ACM/IEEE Conference on Supercomputing, SC 2000 - Dallas, United States
Duration: Nov 4 2000Nov 10 2000

Publication series

NameProceedings of the International Conference on Supercomputing


Conference2000 ACM/IEEE Conference on Supercomputing, SC 2000
Country/TerritoryUnited States

ASJC Scopus subject areas

  • General Computer Science


Dive into the research topics of 'High-performance reactive fluid flow simulations using adaptive mesh refinement on thousands of processors'. Together they form a unique fingerprint.

Cite this