TY - JOUR
T1 - Heterogeneous mineral assemblages in martian meteorite Tissint as a result of a recent small impact event on Mars
AU - Walton, E. L.
AU - Sharp, Thomas
AU - Hu, J.
AU - Filiberto, J.
N1 - Funding Information:
This work has been funded by the Natural Science and Engineering Research Council Discovery Grant RES0007057 awarded to E. Walton. T. Sharp and J. Hu acknowledge NASA Cosmochemistry NNH08ZDA001 N-COS Grant NNX09AG41G supporting TEM analyses. NASA Grant MFR #NNX13AG35G, awarded to J. Filiberto, facilitated purchase of the Tissint material used in this study. We gratefully acknowledge the use of FIB/TEM facilities within the LeRoy Eyring Center for Solid State Science at Arizona State University. Thanks for De-Ann Rollings for SEM assistance at the University of Alberta. Constructive comments by Axel Whittmann, Jörg Fritz and an anonymous reviewer improved the overall quality of this manuscript.
PY - 2014/9/1
Y1 - 2014/9/1
N2 - The microtexture and mineralogy of shock melts in the Tissint martian meteorite were investigated using scanning electron microscopy, Raman spectroscopy, transmission electron microscopy and synchrotron micro X-ray diffraction to understand shock conditions and duration. Distinct mineral assemblages occur within and adjacent to the shock melts as a function of the thickness and hence cooling history. The matrix of thin veins and pockets of shock melt consists of clinopyroxene. +. ringwoodite. ±. stishovite embedded in glass with minor Fe-sulfide. The margins of host rock olivine in contact with the melt, as well as entrained olivine fragments, are now amorphosed silicate perovskite. +. magnesiowüstite or clinopyroxene. +. magnesiowüstite. The pressure stabilities of these mineral assemblages are ~15. GPa and >19. GPa, respectively. The ~200-μm-wide margin of a thicker, mm-size (up to 1.4. mm) shock melt vein contains clinopyroxene. +. olivine, with central regions comprising glass. +. vesicles. +. Fe-sulfide spheres. Fragments of host rock within the melt are polycrystalline olivine (after olivine) and tissintite. +. glass (after plagioclase). From these mineral assemblages the crystallization pressure at the vein edge was as high as 14. GPa. The interior crystallized at ambient pressure. The shock melts in Tissint quench-crystallized during and after release from the peak shock pressure; crystallization pressures and those determined from olivine dissociation therefore represent the minimum shock loading. Shock deformation in host rock minerals and complete transformation of plagioclase to maskelynite suggest the peak shock pressure experienced by Tissint. ≥. 29-30. GPa. These pressure estimates support our assessment that the peak shock pressure in Tissint was significantly higher than the minimum 19. GPa required to transform olivine to silicate perovskite plus magnesiowüstite.Small volumes of shock melt (<100μm) quench rapidly (0.01s), whereas thermal equilibration will occur within 1.2s in larger volumes of melt (1mm2). The apparent variation in shock pressure recorded by variable mineral assemblages within and around shock melts in Tissint is consistent with a shock pulse on the order of 10-20ms combined with a longer duration of post-shock cooling and complex thermal history. This implies that the impact on Mars that shocked and ejected Tissint at ~1Ma was not exceptionally large.
AB - The microtexture and mineralogy of shock melts in the Tissint martian meteorite were investigated using scanning electron microscopy, Raman spectroscopy, transmission electron microscopy and synchrotron micro X-ray diffraction to understand shock conditions and duration. Distinct mineral assemblages occur within and adjacent to the shock melts as a function of the thickness and hence cooling history. The matrix of thin veins and pockets of shock melt consists of clinopyroxene. +. ringwoodite. ±. stishovite embedded in glass with minor Fe-sulfide. The margins of host rock olivine in contact with the melt, as well as entrained olivine fragments, are now amorphosed silicate perovskite. +. magnesiowüstite or clinopyroxene. +. magnesiowüstite. The pressure stabilities of these mineral assemblages are ~15. GPa and >19. GPa, respectively. The ~200-μm-wide margin of a thicker, mm-size (up to 1.4. mm) shock melt vein contains clinopyroxene. +. olivine, with central regions comprising glass. +. vesicles. +. Fe-sulfide spheres. Fragments of host rock within the melt are polycrystalline olivine (after olivine) and tissintite. +. glass (after plagioclase). From these mineral assemblages the crystallization pressure at the vein edge was as high as 14. GPa. The interior crystallized at ambient pressure. The shock melts in Tissint quench-crystallized during and after release from the peak shock pressure; crystallization pressures and those determined from olivine dissociation therefore represent the minimum shock loading. Shock deformation in host rock minerals and complete transformation of plagioclase to maskelynite suggest the peak shock pressure experienced by Tissint. ≥. 29-30. GPa. These pressure estimates support our assessment that the peak shock pressure in Tissint was significantly higher than the minimum 19. GPa required to transform olivine to silicate perovskite plus magnesiowüstite.Small volumes of shock melt (<100μm) quench rapidly (0.01s), whereas thermal equilibration will occur within 1.2s in larger volumes of melt (1mm2). The apparent variation in shock pressure recorded by variable mineral assemblages within and around shock melts in Tissint is consistent with a shock pulse on the order of 10-20ms combined with a longer duration of post-shock cooling and complex thermal history. This implies that the impact on Mars that shocked and ejected Tissint at ~1Ma was not exceptionally large.
UR - http://www.scopus.com/inward/record.url?scp=84904705199&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84904705199&partnerID=8YFLogxK
U2 - 10.1016/j.gca.2014.05.023
DO - 10.1016/j.gca.2014.05.023
M3 - Article
AN - SCOPUS:84904705199
SN - 0016-7037
VL - 140
SP - 334
EP - 348
JO - Geochimica et Cosmochimica Acta
JF - Geochimica et Cosmochimica Acta
ER -