TY - JOUR
T1 - HED zircons as a window into the solar system's first crust
T2 - Decoupling primordial differentiation, metamorphism and impact events through textural and chemical studies
AU - Barboni, Melanie
AU - Marquardt, Madeline
AU - Timms, Nicholas E.
AU - Bell, Elizabeth Ann
N1 - Publisher Copyright:
© 2024 Elsevier Ltd
PY - 2024/7/1
Y1 - 2024/7/1
N2 - The study of Howardite-Eucrite-Diogenite (HED) meteorites provides unique insights into early planet formation and the impact events that shaped the early Solar System. However, unraveling the complex history of the HED parent body (hypothesized to be the asteroid 4 Vesta) from whole-rock samples is challenging since most HEDs are impact-related breccias comprising mixed lithic and mineral fragments that experienced variable deformation and alteration. Combining U-Pb geochronology, trace element geochemistry, and microstructural analysis of zircon can unravel magmatic, metamorphic and impact processes through time to decipher the HED parent body evolution. Here we present textural (EBSD), geochronological (207Pb/206Pb SIMS dating) and geochemical data (Th/U, REE, Ti-in-zircon thermometry) on 61 zircon grains from melt breccia eucrites, unbrecciated/monomict/polymict eucrites, howardites and diogenites. Diverse textures indicate variable histories of impact deformation and high-temperature recrystallization. Undeformed, fractured zircons preserve primary zoning (CL, Th/U, REE) indicating magmatic and metamorphic origins. At least three magmatic zircon grains (Th/U > 0.3) give 207Pb/206Pb ages of 4558–4565 Ma, suggesting primary differentiation in the parent body first million years. Twenty metamorphic zircon grains (Th/U < 0.3) date to 4420–4568 Ma, indicating prolonged thermal metamorphism from impact heating and/or crustal cooling. Impact-recrystallized granular zircon grains reveal major impacts during and just after the parent body differentiation (4500–4560 Ma), plus later events potentially linked to synchronous impacts in the Solar System (e.g. the Moon). Similarity of metamorphic and shocked zircon ages (circa 4550–4450 Ma) suggests impacts occurred for ≥100 million years after the parent body formed.
AB - The study of Howardite-Eucrite-Diogenite (HED) meteorites provides unique insights into early planet formation and the impact events that shaped the early Solar System. However, unraveling the complex history of the HED parent body (hypothesized to be the asteroid 4 Vesta) from whole-rock samples is challenging since most HEDs are impact-related breccias comprising mixed lithic and mineral fragments that experienced variable deformation and alteration. Combining U-Pb geochronology, trace element geochemistry, and microstructural analysis of zircon can unravel magmatic, metamorphic and impact processes through time to decipher the HED parent body evolution. Here we present textural (EBSD), geochronological (207Pb/206Pb SIMS dating) and geochemical data (Th/U, REE, Ti-in-zircon thermometry) on 61 zircon grains from melt breccia eucrites, unbrecciated/monomict/polymict eucrites, howardites and diogenites. Diverse textures indicate variable histories of impact deformation and high-temperature recrystallization. Undeformed, fractured zircons preserve primary zoning (CL, Th/U, REE) indicating magmatic and metamorphic origins. At least three magmatic zircon grains (Th/U > 0.3) give 207Pb/206Pb ages of 4558–4565 Ma, suggesting primary differentiation in the parent body first million years. Twenty metamorphic zircon grains (Th/U < 0.3) date to 4420–4568 Ma, indicating prolonged thermal metamorphism from impact heating and/or crustal cooling. Impact-recrystallized granular zircon grains reveal major impacts during and just after the parent body differentiation (4500–4560 Ma), plus later events potentially linked to synchronous impacts in the Solar System (e.g. the Moon). Similarity of metamorphic and shocked zircon ages (circa 4550–4450 Ma) suggests impacts occurred for ≥100 million years after the parent body formed.
KW - HED meteorites
KW - Impact
KW - Trace elements
KW - U-Pb
KW - Zircon
UR - http://www.scopus.com/inward/record.url?scp=85193918120&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85193918120&partnerID=8YFLogxK
U2 - 10.1016/j.gca.2024.05.011
DO - 10.1016/j.gca.2024.05.011
M3 - Article
AN - SCOPUS:85193918120
SN - 0016-7037
VL - 376
SP - 113
EP - 133
JO - Geochimica et Cosmochimica Acta
JF - Geochimica et Cosmochimica Acta
ER -