GAMA/DEVILS: constraining the cosmic star formation history from improved measurements of the 0.3–2.2 μ m extragalactic background light

Soheil Koushan, Simon P. Driver, Sabine Bellstedt, Luke J. Davies, Aaron S.G. Robotham, Claudia del Lagos, Abdolhosein Hashemizadeh, Danail Obreschkow, Jessica E. Thorne, Malcolm Bremer, B. W. Holwerda, Andrew M. Hopkins, Matt J. Jarvis, Malgorzata Siudek, Rogier Windhorst

Research output: Contribution to journalArticlepeer-review

9 Scopus citations


We present a revised measurement of the optical extragalactic background light (EBL), based on the contribution of resolved galaxies to the integrated galaxy light (IGL). The cosmic optical background radiation (COB), encodes the light generated by star formation, and provides a wealth of information about the cosmic star formation history (CSFH). We combine wide and deep galaxy number counts from the Galaxy And Mass Assembly survey (GAMA) and Deep Extragalactic VIsible Legacy Survey (DEVILS), along with the Hubble Space Telescope (HST) archive and other deep survey data sets, in nine multiwavelength filters to measure the COB in the range from 0.35 μm to 2.2 μm. We derive the luminosity density in each band independently and show good agreement with recent and complementary estimates of the optical-EBL from very high-energy (VHE) experiments. Our error analysis suggests that the IGL and γ -ray measurements are now fully consistent to within ∼ 10 per cent, suggesting little need for any additional source of diffuse light beyond the known galaxy population. We use our revised IGL measurements to constrain the CSFH, and place amplitude constraints on a number of recent estimates. As a consistency check, we can now demonstrate convincingly, that the CSFH, stellar mass growth, and the optical-EBL provide a fully consistent picture of galaxy evolution. We conclude that the peak of star formation rate lies in the range 0.066–0.076 M yr−1 Mpc−3 at a lookback time of 9.1 to 10.9 Gyr.

Original languageEnglish (US)
Pages (from-to)2052
Number of pages1
JournalMonthly Notices of the Royal Astronomical Society
Issue number2
StatePublished - May 1 2021


  • Cosmological parameters
  • Cosmology: cosmic background radiation
  • Diffuse radiation
  • Galaxies: evolution
  • Galaxies: statistics
  • Methods: data analysis

ASJC Scopus subject areas

  • Astronomy and Astrophysics
  • Space and Planetary Science


Dive into the research topics of 'GAMA/DEVILS: constraining the cosmic star formation history from improved measurements of the 0.3–2.2 μ m extragalactic background light'. Together they form a unique fingerprint.

Cite this