Fine structure of vortex sheet rollup by viscous and inviscid simulation

G. Tryggvason, W. J.A. Dahm, K. Sbeih

Research output: Contribution to journalArticlepeer-review

63 Scopus citations

Abstract

Numerical simulations of the large amplitude stage of the Kelvin-Helmholtz instability of a relatively thin vorticity layer are discussed. At high Reynolds number, the effect of viscosity is commonly neglected and the thin layer is modeled as a vortex sheet separating one potential flow region from another. Since such vortex sheets are susceptible to a short wavelength instability, as well as singularity formation, it is necessary to provide an artificial “regularization” for long time calculations. We examine the effect of this regularization by comparing vortex sheet calculations with fully viscous finite difference calculations of the Navier-Stokes equations. In particular, we compare the limiting behavior of the viscous simulations for high Reynolds numbers and small initial layer thickness with the limiting solution for the roll-up of an inviscid vortex sheet. Results show that the inviscid regularization effectively reproduces many of the features associated with the thickness of viscous vorticity layers with increasing Reynolds number, though the simplified dynamics of the inviscid model allows it to accurately simulate only the large scale features of the vorticity field. Our results also show that the limiting solution of zero regularization for the inviscid model and high Reynolds number and zero initial thickness for the viscous simulations appear to be the same.

Original languageEnglish (US)
Pages (from-to)31-36
Number of pages6
JournalJournal of Fluids Engineering, Transactions of the ASME
Volume113
Issue number1
DOIs
StatePublished - Mar 1991
Externally publishedYes

ASJC Scopus subject areas

  • Mechanical Engineering

Fingerprint

Dive into the research topics of 'Fine structure of vortex sheet rollup by viscous and inviscid simulation'. Together they form a unique fingerprint.

Cite this