@article{a357d0f972154387aef50a7c78be46a8,
title = "Feature selective temporal prediction of Alzheimer's disease progression using hippocampus surface morphometry",
abstract = "Introduction: Prediction of Alzheimer's disease (AD) progression based on baseline measures allows us to understand disease progression and has implications in decisions concerning treatment strategy. To this end, we combine a predictive multi-task machine learning method (cFSGL) with a novel MR-based multivariate morphometric surface map of the hippocampus (mTBM) to predict future cognitive scores of patients. Methods: Previous work has shown that a multi-task learning framework that performs prediction of all future time points simultaneously (cFSGL) can be used to encode both sparsity as well as temporal smoothness. The authors showed that this method is able to predict cognitive outcomes of ADNI subjects using FreeSurfer-based baseline MRI features, MMSE score demographic information and ApoE status. Whilst volumetric information may hold generalized information on brain status, we hypothesized that hippocampus specific information may be more useful in predictive modeling of AD. To this end, we applied a multivariate tensor-based parametric surface analysis method (mTBM) to extract features from the hippocampal surfaces. Results: We combined mTBM features with traditional surface features such as middle axis distance, the Jacobian determinant as well as 2 of the Jacobian principal eigenvalues to yield 7 normalized hippocampal surface maps of 300 points each. By combining these 7 × 300 = 2100 features together with the previous ~350 features, we illustrate how this type of sparsifying method can be applied to an entire surface map of the hippocampus that yields a feature space that is 2 orders of magnitude larger than what was previously attempted. Conclusions: By combining the power of the cFSGL multi-task machine learning framework with the addition of AD sensitive mTBM feature maps of the hippocampus surface, we are able to improve the predictive performance of ADAS cognitive scores 6, 12, 24, 36 and 48 months from baseline.",
keywords = "Alzheimer's Disease, dementia, hippocampus, machine learning, multi-task learning, tensor-based morphometry",
author = "Sinchai Tsao and Niharika Gajawelli and Jiayu Zhou and Jie Shi and Jieping Ye and Yalin Wang and Natasha Lepor{\'e}",
note = "Funding Information: Data collection and sharing for this project was funded by the Alzheimer's Disease Neuroimaging Initiative (ADNI) (National Institutes of Health Grant U01 AG024904) and DOD ADNI (Department of Defense award number W81XWH-12-2-0012). ADNI is funded by the National Institute on Aging, the National Institute of Biomedical Imaging and Bioengineering, and through generous contributions from the following: Alzheimer's Association; Alzheimer's Drug Discovery Foundation; BioClinica, Inc.; Biogen Idec Inc.; Bristol-Myers Squibb Company; Eisai Inc.; Elan Pharmaceuticals, Inc.; Eli Lilly and Company; F. Hoffmann-La Roche Ltd and its affiliated company Genentech, Inc.; GE Healthcare; Innogenetics, N.V.; IXICO Ltd.; Janssen Alzheimer Immunotherapy Research & Development, LLC.; Johnson & Johnson Pharmaceutical Research & Development LLC.; Medpace, Inc.; Merck & Co., Inc.; Meso Scale Diagnostics, LLC.; NeuroRx Research; Novartis Pharmaceuticals Corporation; Pfizer Inc.; Piramal Imaging; Servier; Synarc Inc.; and Takeda Pharmaceutical Company. The Canadian Institutes of Health Research is providing funds to support ADNI clinical sites in Canada. Private sector contributions are facilitated by the Foundation for the National Institutes of Health (www.fnih.org). The grantee organization is the Northern California Institute for Research and Education, and the study is coordinated by the Alzheimer's Disease Cooperative Study at the University of California, San Diego. ADNI data are disseminated by the Laboratory for NeuroImaging at the University of Southern California. Funding Information: Alzheimer{\textquoteright}s Disease Neuroimaging Initiative (ADNI); National Institutes of Health, Grant/ Award Number: AG024904; DOD ADNI, Grant/Award Number: W81XWH-12-2-0012; National Institute on Aging; National Institute of Biomedical Imaging and Bioengineering; Canadian Institutes of Health Research Publisher Copyright: {\textcopyright} 2017 The Authors. Brain and Behavior published by Wiley Periodicals, Inc.",
year = "2017",
month = jul,
doi = "10.1002/brb3.733",
language = "English (US)",
volume = "7",
journal = "Brain and Behavior",
issn = "2157-9032",
publisher = "John Wiley and Sons Inc.",
number = "7",
}