Evolving multirobot excavation controllers and choice of platforms using an artificial neural tissue paradigm

Jekanthan Thangavelautham, Nader Abu El Samid, Paul Grouchy, Ernest Earon, Terence Fu, Nagina Nagrani, Gabriele M T D'Eleuterio

Research output: Chapter in Book/Report/Conference proceedingConference contribution

18 Scopus citations

Abstract

Autonomous robotic excavation has often been limited to a single robotic platform using a specified excavation vehicle. This paper presents a novel method for developing scalable controllers for use in multirobot scenarios and that do not require human defined operations scripts nor extensive modeling of the kinematics and dynamics of the excavation vehicles. Furthermore, the control system does not require specifying an excavation vehicle type such as a bulldozer, frontloader or bucket-wheel and it can evolve to select for an appropriate choice of excavation vehicles to successfully complete a task. The "Artificial Neural Tissue" (ANT) architecture is used as a control system for autonomous multirobot excavation and clearing tasks. This control architecture combines a variable-topology neural-network structure with a coarse-coding strategy that permits specialized areas to develop in the tissue. Training is done in a low-fidelity grid world simulation environment and where a single global fitness function and a set of allowable basis behaviors need be specified. This approach is found to provide improved training performance over fixed-topology neural networks and can be easily ported onto different robot platforms. Aspects of the controller functionality have been tested using high fidelity dynamics simulation and in hardware. An evolutionary training process discovers novel decentralized methods of cooperation employing aggregation behaviors (via synchronized movements). These aggregation behaviors are found to improve controller scalability (with increasing robot density) and better handle robot interference (antagonism) that reduces the overall efficiency of the group.

Original languageEnglish (US)
Title of host publicationProceedings of IEEE International Symposium on Computational Intelligence in Robotics and Automation, CIRA
Pages258-265
Number of pages8
DOIs
StatePublished - 2009
Externally publishedYes
Event2009 IEEE International Symposium on Computational Intelligence in Robotics and Automation, CIRA 2009 - Daejeon, Korea, Republic of
Duration: Dec 15 2009Dec 18 2009

Other

Other2009 IEEE International Symposium on Computational Intelligence in Robotics and Automation, CIRA 2009
Country/TerritoryKorea, Republic of
CityDaejeon
Period12/15/0912/18/09

ASJC Scopus subject areas

  • Computational Mathematics

Fingerprint

Dive into the research topics of 'Evolving multirobot excavation controllers and choice of platforms using an artificial neural tissue paradigm'. Together they form a unique fingerprint.

Cite this