Evolution of an initially columnar vortex terminating normal to a no-slip wall

A. Hirsa, Juan Lopez, S. Kim

Research output: Contribution to journalArticlepeer-review

15 Scopus citations


The early evolution of an initially columnar vortex normal to a solid wall was examined. The vortex was generated by a pair of flaps in a water tank. Detrimental effects from the wall during the vortex generation were avoided by producing the vortex normal to a free surface and subsequently bringing a horizontal plate into contact with the surface. Digital particle image velocimetry (DPIV) measurements of the velocity and vorticity, together with laser induced fluorescence (LIF) visualizations, in a meridional plane revealed a toroidal structure with the appearance of an axisymmetric vortex breakdown bubble. Agreement was found between the measurements and numerical simulations of the axisymmetric Navier-Stokes equations. The results show that the flow in the effusive corner region is dominated by a Bödewadt-type spatially oscillatory boundary layer within the core region and a potential-like vortex boundary layer at large radii. The toroidal structure results from the interaction between these two boundary layers, leading to the roll up of a dominant shear layer within the Bödewadt structure, and does not develop from the columnar vortex itself.

Original languageEnglish (US)
Pages (from-to)309-321
Number of pages13
JournalExperiments in Fluids
Issue number4
StatePublished - Oct 2000

ASJC Scopus subject areas

  • Computational Mechanics
  • Mechanics of Materials
  • Physics and Astronomy(all)
  • Fluid Flow and Transfer Processes


Dive into the research topics of 'Evolution of an initially columnar vortex terminating normal to a no-slip wall'. Together they form a unique fingerprint.

Cite this