Encoding quantized fluorescence states with fractal DNA frameworks

Jiang Li, Jiangbing Dai, Shuoxing Jiang, Mo Xie, Tingting Zhai, Linjie Guo, Shuting Cao, Shu Xing, Zhibei Qu, Yan Zhao, Fei Wang, Yang Yang, Lei Liu, Xiaolei Zuo, Lihua Wang, Hao Yan, Chunhai Fan

Research output: Contribution to journalArticlepeer-review

37 Scopus citations


Signal amplification in biological systems is achieved by cooperatively recruiting multiple copies of regulatory biomolecules. Nevertheless, the multiplexing capability of artificial fluorescent amplifiers is limited due to the size limit and lack of modularity. Here, we develop Cayley tree-like fractal DNA frameworks to topologically encode the fluorescence states for multiplexed detection of low-abundance targets. Taking advantage of the self-similar topology of Cayley tree, we use only 16 DNA strands to construct n-node (n = 53) structures of up to 5 megadalton. The high level of degeneracy allows encoding 36 colours with 7 nodes by site-specifically anchoring of distinct fluorophores onto a structure. The fractal topology minimises fluorescence crosstalk and allows quantitative decoding of quantized fluorescence states. We demonstrate a spectrum of rigid-yet-flexible super-multiplex structures for encoded fluorescence detection of single-molecule recognition events and multiplexed discrimination of living cells. Thus, the topological engineering approach enriches the toolbox for high-throughput cell imaging.

Original languageEnglish (US)
Article number2185
JournalNature communications
Issue number1
StatePublished - Dec 1 2020

ASJC Scopus subject areas

  • General Physics and Astronomy
  • General Chemistry
  • General Biochemistry, Genetics and Molecular Biology


Dive into the research topics of 'Encoding quantized fluorescence states with fractal DNA frameworks'. Together they form a unique fingerprint.

Cite this