Embedded-atom-method tantalum potential developed by the force-matching method

Youhong Li, James Adams, Donald J. Siegel, Xiang Yang Liu

Research output: Contribution to journalArticlepeer-review

11 Scopus citations

Abstract

An embedded-atom-method potential for tantalum (Ta) has been carefully constructed by fitting to a combination of experimental and density-functional theory (DFT) data. The fitted data include the elastic constants, lattice constant, cohesive energy, unrelaxed vacancy formation energy, and hundreds of force data calculated by DFT for a variety of structures such as liquids, surfaces, clusters, interstitials, vacancies, and stacking faults. We also fit to the cohesive energy vs volume data from the equation of state for the body-centered-cubic (bcc) Ta and to the calculated cohesive energy using DFT for the face-centered-cubic (fcc) Ta structure. We assess the accuracy of the new potential by comparing several calculated Ta properties with those obtained from other potentials previously reported in the literature. In many cases, the new potential yields superior accuracy at a comparable or lower computational cost.

Original languageEnglish (US)
Pages (from-to)8
Number of pages1
JournalPhysical Review B - Condensed Matter and Materials Physics
Volume67
Issue number12
DOIs
StatePublished - 2003

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Condensed Matter Physics

Fingerprint

Dive into the research topics of 'Embedded-atom-method tantalum potential developed by the force-matching method'. Together they form a unique fingerprint.

Cite this