Abstract

We report on a theoretical model which provides the gate voltage dependence of the piezoelectric polarization charge in GaN HEMT devices. The model utilizes a generalization of Gauss' law, imposing constraints on the electric displacement vector D. The constraint on D is given by the continuity of the perpendicular component of the displacement vector across an interface. Poisson's equation is then solved across various layers under proper boundary conditions for the applied bias. The piezoelectric polarization charge is reduced due to the electromechanical coupling compared to the uncoupled case. Under high sheet electron densities, the correction in the piezoelectric polarization charge is also lower due to smaller electric fields.

Original languageEnglish (US)
Title of host publicationTechnical Proceedings of the 2011 NSTI Nanotechnology Conference and Expo, NSTI-Nanotech 2011
Pages679-681
Number of pages3
StatePublished - Nov 23 2011
EventNanotechnology 2011: Electronics, Devices, Fabrication, MEMS, Fluidics and Computational - 2011 NSTI Nanotechnology Conference and Expo, NSTI-Nanotech 2011 - Boston, MA, United States
Duration: Jun 13 2011Jun 16 2011

Publication series

NameTechnical Proceedings of the 2011 NSTI Nanotechnology Conference and Expo, NSTI-Nanotech 2011
Volume2

Other

OtherNanotechnology 2011: Electronics, Devices, Fabrication, MEMS, Fluidics and Computational - 2011 NSTI Nanotechnology Conference and Expo, NSTI-Nanotech 2011
Country/TerritoryUnited States
CityBoston, MA
Period6/13/116/16/11

Keywords

  • GaN HEMTs
  • Piezoelectric polarization charge density

ASJC Scopus subject areas

  • Hardware and Architecture
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'Electromechanical coupling in AlGaN/AlN/GaN HEMT's'. Together they form a unique fingerprint.

Cite this