EDarkFind: Unsupervised Multi-view Learning for Sybil Account Detection

Ramnath Kumar, Shweta Yadav, Raminta Daniulaityte, Francois Lamy, Krishnaprasad Thirunarayan, Usha Lokala, Amit Sheth

Research output: Chapter in Book/Report/Conference proceedingConference contribution

13 Scopus citations


Darknet crypto markets are online marketplaces using crypto currencies (e.g., Bitcoin, Monero) and advanced encryption techniques to offer anonymity to vendors and consumers trading for illegal goods or services. The exact volume of substances advertised and sold through these crypto markets is difficult to assess, at least partially, because vendors tend to maintain multiple accounts (or Sybil accounts) within and across different crypto markets. Linking these different accounts will allow us to accurately evaluate the volume of substances advertised across the different crypto markets by each vendor. In this paper, we present a multi-view unsupervised framework (eDarkFind) that helps modeling vendor characteristics and facilitates Sybil account detection. We employ a multi-view learning paradigm to generalize and improve the performance by exploiting the diverse views from multiple rich sources such as BERT, stylometric, and location representation. Our model is further tailored to take advantage of domain-specific knowledge such as the Drug Abuse Ontology to take into consideration the substance information. We performed extensive experiments and demonstrated that the multiple views obtained from diverse sources can be effective in linking Sybil accounts. Our proposed eDarkFind model achieves an accuracy of 98% on three real-world datasets which shows the generality of the approach.

Original languageEnglish (US)
Title of host publicationThe Web Conference 2020 - Proceedings of the World Wide Web Conference, WWW 2020
PublisherAssociation for Computing Machinery, Inc
Number of pages11
ISBN (Electronic)9781450370233
StatePublished - Apr 20 2020
Externally publishedYes
Event29th International World Wide Web Conference, WWW 2020 - Taipei, Taiwan, Province of China
Duration: Apr 20 2020Apr 24 2020

Publication series

NameThe Web Conference 2020 - Proceedings of the World Wide Web Conference, WWW 2020


Conference29th International World Wide Web Conference, WWW 2020
Country/TerritoryTaiwan, Province of China


  • Correlation Analysis
  • Darknet Market
  • Drug Trafficker Identification
  • Multi-view Learning
  • Stylometry
  • Sybil Detection

ASJC Scopus subject areas

  • Computer Networks and Communications
  • Software


Dive into the research topics of 'EDarkFind: Unsupervised Multi-view Learning for Sybil Account Detection'. Together they form a unique fingerprint.

Cite this