DSPIMM: A Fully Digital SParse In-Memory Matrix Vector Multiplier for Communication Applications

Amitesh Sridharan, Fan Zhang, Yang Sui, Bo Yuan, Deliang Fan

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Channel decoders are key computing modules in wired/wireless communication systems. Recently neural network (NN)-based decoders have shown their promising error-correcting performance because of their end-to-end learning capability. However, compared with the traditional approaches, the emerging neural belief propagation (NBP) solution suffers higher storage and computational complexity, limiting its hardware performance. To address this challenge and develop a channel decoder that can achieve high decoding performance and hardware performance simultaneously, in this paper we take a first step towards exploring SRAM-based in-memory computing for efficient NBP channel decoding. We first analyze the unique sparsity pattern in the NBP processing, and then propose an efficient and fully Digital Sparse In-Memory Matrix vector Multiplier (DSPIMM) computing platform. Extensive experiments demonstrate that our proposed DSPIMM achieves significantly higher energy efficiency and throughput than the state-of-the-art counterparts.

Original languageEnglish (US)
Title of host publication2023 60th ACM/IEEE Design Automation Conference, DAC 2023
PublisherInstitute of Electrical and Electronics Engineers Inc.
ISBN (Electronic)9798350323481
DOIs
StatePublished - 2023
Externally publishedYes
Event60th ACM/IEEE Design Automation Conference, DAC 2023 - San Francisco, United States
Duration: Jul 9 2023Jul 13 2023

Publication series

NameProceedings - Design Automation Conference
Volume2023-July
ISSN (Print)0738-100X

Conference

Conference60th ACM/IEEE Design Automation Conference, DAC 2023
Country/TerritoryUnited States
CitySan Francisco
Period7/9/237/13/23

Keywords

  • In-Memory-Computing
  • MAC
  • Neural Decoder
  • SRAM
  • Sparsity

ASJC Scopus subject areas

  • Computer Science Applications
  • Control and Systems Engineering
  • Electrical and Electronic Engineering
  • Modeling and Simulation

Fingerprint

Dive into the research topics of 'DSPIMM: A Fully Digital SParse In-Memory Matrix Vector Multiplier for Communication Applications'. Together they form a unique fingerprint.

Cite this