Distributed opportunistic scheduling for wireless networks powered by renewable energy sources

Hang Li, Chuan Huang, Shuguang Cui, Junshan Zhang

Research output: Chapter in Book/Report/Conference proceedingConference contribution

9 Scopus citations


This paper considers an ad hoc network with multiple transmitter-receiver pairs, in which all transmitters are capable of harvesting renewable energy from the environment and compete for the same channel by random access. To quantify the roles of both the energy state information (ESI) and the channel state information (CSI), a distributed opportunistic scheduling (DOS) framework with a save-then-transmit scheme is proposed. First, in the channel probing stage, each transmitter probes the CSI via channel contention; next, in the data transmission stage, the successful transmitter decides to either give up the channel (if the expected reward calculated over the CSI and ESI is small) or hold and utilize the channel by optimally exploring the energy harvesting and data transmission tradeoff. With a constant energy arrival model, i.e., the energy harvesting rate keeps identical over the time of interest, the expected throughput maximization problem is formulated as an optimal stopping problem, whose solution is shown to exist and have a threshold-based structure, for both the homogeneous and heterogenous cases. Furthermore, we prove that there exists a steady-state distribution for the stored energy level at each transmitter, and propose an efficient iterative algorithm for its computation. Finally, we show via numerical results that the proposed scheme can achieve a potential 175% throughput gain compared with the method of best-effort delivery.

Original languageEnglish (US)
Title of host publicationIEEE INFOCOM 2014 - IEEE Conference on Computer Communications
PublisherInstitute of Electrical and Electronics Engineers Inc.
Number of pages9
ISBN (Print)9781479933600
StatePublished - Jan 1 2014
Event33rd IEEE Conference on Computer Communications, IEEE INFOCOM 2014 - Toronto, ON, Canada
Duration: Apr 27 2014May 2 2014

Publication series

NameProceedings - IEEE INFOCOM
ISSN (Print)0743-166X


Other33rd IEEE Conference on Computer Communications, IEEE INFOCOM 2014
CityToronto, ON

ASJC Scopus subject areas

  • General Computer Science
  • Electrical and Electronic Engineering


Dive into the research topics of 'Distributed opportunistic scheduling for wireless networks powered by renewable energy sources'. Together they form a unique fingerprint.

Cite this