DISTDET: A Cost-Effective Distributed Cyber Threat Detection System

Feng Dong, Liu Wang, Xu Nie, Fei Shao, Haoyu Wang, Ding Li, Xiapu Luo, Xusheng Xiao

Research output: Chapter in Book/Report/Conference proceedingConference contribution

30 Scopus citations

Abstract

Building provenance graph that considers causal relationships among software behaviors can better provide contextual information of cyber attacks, especially for advanced attacks such as Advanced Persistent Threat (APT) attacks. Despite its promises in assisting attack investigation, existing approaches that use provenance graphs to perform attack detection suffer from two fundamental limitations. First, existing approaches adopt a centralized detection architecture that sends all system auditing logs to the server for processing, incurring intolerable costs of data transmission, data storage, and computation. Second, they adopt either rule-based techniques that cannot detect unknown threats, or anomaly-detection techniques that produce numerous false alarms, failing to achieve a balance of precision and recall in APT detection. To address these fundamental challenges, we propose DISTDET, a distributed detection system that detects APT attacks by (1) performing light weight detection based on the host model built in the client side, (2) filtering false alarms based on the semantics of the alarm proprieties, and (3) deriving global models to complement the local bias of the host models. Our experiments on a large-scale industrial environment (1,130 hosts, 14 days, ~1.6 billion events) and the DARPA TC dataset show that DISTDET is as effective as sate-of-the-art techniques in detecting attacks, while dramatically reducing network bandwidth from 11.28Mb/s to 17.08Kb/S (676.5× reduction), memory usages from 364MB to 5.523MB (66× reduction), and storage from 1.47GB to 130.34MB (11.6× reduction). By the time of this writing, DISTDET has been deployed to 50+ industry customers with 22,000+ hosts for more than 6 months, and identified over 900 real-world attacks.

Original languageEnglish (US)
Title of host publication32nd USENIX Security Symposium, USENIX Security 2023
PublisherUSENIX Association
Pages6575-6592
Number of pages18
ISBN (Electronic)9781713879497
StatePublished - 2023
Event32nd USENIX Security Symposium, USENIX Security 2023 - Anaheim, United States
Duration: Aug 9 2023Aug 11 2023

Publication series

Name32nd USENIX Security Symposium, USENIX Security 2023
Volume9

Conference

Conference32nd USENIX Security Symposium, USENIX Security 2023
Country/TerritoryUnited States
CityAnaheim
Period8/9/238/11/23

ASJC Scopus subject areas

  • Computer Networks and Communications
  • Information Systems
  • Safety, Risk, Reliability and Quality

Fingerprint

Dive into the research topics of 'DISTDET: A Cost-Effective Distributed Cyber Threat Detection System'. Together they form a unique fingerprint.

Cite this