Detection of Unknown Errors in Human-Centered Systems

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Artificial Intelligence-enabled systems are increasingly being deployed in real-world safety-critical settings involving human participants. It is vital to ensure the safety of such systems and stop the evolution of the system with error before causing harm to human participants. We propose a model-agnostic approach to detecting unknown errors in such human-centered systems without requiring any knowledge about the error signatures. Our approach employs dynamics-induced hybrid recurrent neural networks (DiH-RNN) for constructing physics-based models from operational data, coupled with conformal inference for assessing errors in the underlying model caused by violations of physical laws, thereby facilitating early detection of unknown errors before unsafe shifts in operational data distribution occur. We evaluate our framework on multiple real-world safety critical systems and show that our technique outperforms the existing state-of-the-art in detecting unknown errors.

Original languageEnglish (US)
Title of host publicationPattern Recognition - 27th International Conference, ICPR 2024, Proceedings
EditorsApostolos Antonacopoulos, Subhasis Chaudhuri, Rama Chellappa, Cheng-Lin Liu, Saumik Bhattacharya, Umapada Pal
PublisherSpringer Science and Business Media Deutschland GmbH
Pages176-191
Number of pages16
ISBN (Print)9783031781889
DOIs
StatePublished - 2025
Event27th International Conference on Pattern Recognition, ICPR 2024 - Kolkata, India
Duration: Dec 1 2024Dec 5 2024

Publication series

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volume15309 LNCS
ISSN (Print)0302-9743
ISSN (Electronic)1611-3349

Conference

Conference27th International Conference on Pattern Recognition, ICPR 2024
Country/TerritoryIndia
CityKolkata
Period12/1/2412/5/24

Keywords

  • AI-Safety
  • Human-Centered Systems
  • Physics Based Surrogate Model

ASJC Scopus subject areas

  • Theoretical Computer Science
  • General Computer Science

Fingerprint

Dive into the research topics of 'Detection of Unknown Errors in Human-Centered Systems'. Together they form a unique fingerprint.

Cite this